
1 April 1999 Delphi Informant

April 1999, Volume 5, Number 4

Cover Art By: Darryl Dennis

ON THE COVER
4 From the Shell — Kevin J. Bluck and James Holderness
There are some standard Windows dialog boxes (e.g. Browse for Folder, Run,
Format, etc.) that could prove handy in your Delphi applications. But how to
get to them? Some are completely undocumented. Misters Bluck and
Holderness show us how in this first part of their two-part series.

FEATURES
10 DBNavigator
Delphi Database Development: Part VII — Cary Jensen, Ph.D.
There are three general ways to filter a dataset: a SQL SELECT statement, a
range using an index, and the DataSet.Filter property. Dr Jensen explains
the advantages and disadvantages of each, with examples.

15 Algorithms
Three Searches — Rod Stephens
Mr Stephens weighs the relative merits of three search techniques —
Exhaustive, Binary, and Interpolation — and provides ready-to-run Delphi
implementations of each.

19 On Language
The Interface Advantage — Eric Whipple
Despite their impressive features and acceptance, hierarchical objects can be
inflexible — especially in distributed systems. Mr Whipple explains the rel-
ative advantages of the interface model for Delphi developers.

25 Informant Spotlight
1999 Readers Choice Awards — Chris Austria
It’s that time of the year again. In fact it’s that time of the millennium
again, as our own Mr Austria relates your favorite third-party tools for
the next one thousand years.

29 OP Tech
Property Overriding — Philip Brown
Using property overriding, as Mr Brown explains, it’s possible to extend the
standard functionality of any class using the built-in capabilities of Delphi
— even if the accessor functions used to control the property are pprriivvaattee.

REVIEWS
33 Charlie Calvert’s Delphi 4 Unleashed

Book Review by Cary Jensen, Ph.D.

34 Mastering Delphi 4
Book Review by Robert Vivrette

DEPARTMENTS
2 Delphi Tools
35 File | New by Alan C. Moore, Ph.D.

2 April 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Marotz Releases Cost Xpert 2.0

Marotz, Inc. announced the

release of Cost Xpert 2.0, a new
version of the company’s soft-
ware project estimating and
Dart Announces PowerTCP Pr

ZieglerSoft Announces Ziegle
planning tool.
Cost Xpert 2.0 helps developers

estimate expected time and
resources that a given software
ofessional Edition

AnyWare Announces AppTool

rCollection one 1.50
development project will con-
sume, as well as provide a project
baseline plan that can be import-
ed into a management tool, such

as Microsoft Project. Cost
Xpert 2.0 can estimate projects
developed in over 500 pro-
gramming languages.

Cost Xpert 2.0 supports
seven costing methodologies,
including COCOMO II and
Feature Points. The new ver-
sion is also able to provide
estimates for Year 2000-
compliance development.

Marotz, Inc.
Price: US$1,995 for a single-user
license; discounts are available for
multi-seat licenses.
Phone: (800) 477-6168
Web Site: http://www.marotz.com
s VCL 2.01
Dart Communications intro-
duced PowerTCP Professional
Edition, an Internet toolkit
with support for six develop-
ment environments; PowerTCP
Pro includes 16- and 32-bit
controls, libraries, DLLs, VBXs,
and sample applications for
Delphi, Visual Basic, Visual
C++, Borland C++, C++Builder,
and PowerBuilder.

PowerTCP Pro includes TCP,
TELNET, FTP, SMTP, POP3,
UDP, SNMP, TFTP, VT320
emulation, and HTTP compo-
nents.

PowerTCP Pro is version 4.1 of
Dart’s PowerTCP Internet toolkit
line, and includes additional
enhancements, such as apartment
model threading and the capabili-
ty to dynamically instantiate the
controls without placing them on
a form. The controls can then be
used in non-blocking mode with
events. These formless controls
were used to build the FTP and
SMTP server samples included in
the Professional Edition.
Dart Communications
Price: US$598
Phone: (315) 431-1024
Web Site: http://www.dart.com
AnyWare Ltd. released
AppTools VCL 2.01, a new ver-
sion of the company’s set of
nine native components for
Delphi 3 and 4 and
C++Builder 3. In addition to
improving the previous com-
ponents, AppTools VCL 2.01
adds five new components that
offer drop-in functionality.

The new components are
TATMostRecentlyUsedList,
which enables developers to add
their own re-open menus, etc.;
TATControlEnabler, which
enables/disables groups of con-
trols; TATSettings, which stores
application settings;
TATShowURLButton, which
goes to a Web site when
clicked; and TATHyperLink,
which looks like a link in a
browser.

The enhanced components are
TATWizard, TATTipOfTheDay,
TATSplashScreen, and
TATBrowseButton.

AppTools includes detailed
example applications with
source and a comprehensive
IDE-compatible help file.

AnyWare Ltd.
Price: US$30; current users of AppTools 1.x
can upgrade for US$15.
Fax: (+44) 0 117 973 6888
Web Site: http://www.anyware.co.uk/
anyware/apptools
ZieglerSoft announced the
availability of ZieglerCollection
one 1.50, a set of over 70 com-
ponents, functions, and rou-
tines for Delphi 1 through 4,
as well as C++Builder 1 and 3.

Version 1.50 components
include TzMinMax,
TzBigLabel, Tz3Dlabel,
TzAngleLabel, TzTabListBox,
TzBitmap, TzAnimated,
TzBackground, TzBlendPaint,
TzTileMap, TzLed, TzSegment,
TzSegmentLabel,
TzSegmentClock, TzGauge,
TzSlideBar, TzFrame,
TzDivider, TzMovePanel,
TzTitleBar, TzHint,
TzShowApp, TzVerSpilt,
TzHorSplit, TzMouseSpot,
TzCalc, TzShapeBtn,
TzColorBtn, TzGradBtn,
TzBitColBtn, TzIconColBtn,
TzScope, TzPanelMeter,
TzKnob, TzDblKnob,
TzTripKnob, TzTrayIcon, and
others.

Functions and procedures are
available for manipulating
bitmaps, getting system infor-
mation, and more.

ZieglerSoft
Price: US$52 (includes full source code).
Phone: (+45) 9811 3772
Web Site: http://www.zieglersoft.com

http://www.marotz.com
http://www.dart.com
http://www.anyware.co.uk/anyware/apptools
http://www.anyware.co.uk/anyware/apptools
http://www.zieglersoft.com

3 April 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Cocolsoft Announces Cogencee

Cocolsoft Computer Solutions

announced Cogencee, a compiler
generator for Delphi written in
Delphi. The compiler language
(Cocol) behind Cogencee was
used to generate itself.

Developers can use the com-
piler language (Cocol) and their
Delphi embedded code to pro-
duce scanners, parsers, compil-
ers, interpreters, language check-
ers, natural language processors,
expert system shells, scripting
languages, and calculators.

Cogencee is available for
Delphi 1 (16-bit) for Windows
3.1 and Delphi 4 (32-bit), and
comes with over a dozen exam-
ples, such as an expression cal-
culator and MP (mini Pascal)
compiler and interpreter.
Innoview Data Announces MU

HREF Tools Ships WebHub VC
Cocolsoft Computer Solutions
Price: Standard, US$300; Professional
(includes source code), US$500.
LTILIZER VCL Edition 4.0

L 1.67
E-Mail: info@cocolsoft.com.au
Web Site: http://www.cocolsoft.com.au
Innoview Data Technologies
announced MULTILIZER VCL
Edition 4.0, which improves
work sharing between localiza-
tion team members.
The MULTILIZER VCL is

based on a platform-independent
MULTILIZER Dictionary-
Translator Architecture
(MDTA), which keeps language-
related tasks apart from pro-
grammer’s tasks. The develop-
ment is done with minimum
impact on the source code.

MULTILIZER VCL Edition
4.0 includes enhanced VCL
components and the Language
Manager utility. Both provide
new functionality, including sup-
port for Delphi 1 through 4 and
C++Builder 1 or 3; the ability to
translate resource strings (BDE,
system, and error messages get
translated); and year 2000 cor-
rection to ShortDateFormat and
LongDateFormat variables.

MULTILIZER VCL Edition
4.0 also includes enhanced sup-
port for localization workgroups.
The Language Manager now
includes Deploy Wizard, which
is used for sharing the dictionary
data. Using it, developers can
specify which languages they
want to have translated by differ-
ent persons. The Import Wizard
re-integrates the information
into a project.

Innoview Data Technologies
Price: Standard without source, US$290;
Standard with source, US$580; Pro without
source, US$790; Pro with source, US$1,580.
Phone: +358 9 4762 0550
Web Site: http://www.multilizer.com
HREF Tools Corp.
announced WebHub VCL 1.67,
which offers Delphi program-
mers a framework and set of
components and tools for devel-
oping Web sites.

WebHub’s file structure sepa-
rates the EXE from HTML,
JavaScript, Java, and multimedia
files. When an application server
program built with WebHub
runs, it uses these separately
stored and maintained files, and
serves dynamic Web pages based
on their content. Files may be
changed and the application
server may be refreshed at any
time — without recompiling.
This site maintenance process
can be carried out at the
machine or remotely.

Version 1.67 offers support
for nested macros. WebHub
macros are used in the “script-
ing” that occurs outside of
Delphi by anyone running the
WebHub application server on
Windows NT. Using macro
syntax, HTML specialists can
re-use “chunks” of HTML and,
from these external files, exe-
cute WebHub “Web action”
components in the compiled
application server. These “Web
action” components are regular
Delphi components whose
behavior is customized by pro-
gramming their OnExecute
event. COM/DCOM is not
required, but is supported.

HREF Tools Corp.
Price: From US$430
Phone: (707) 542-0821
Web Site: http://www.href.com

http://www.cocolsoft.com.au
http://www.multilizer.com
http://www.href.com

4 April 1999 Delphi Informant

On the Cover
Undocumented Win32 API / Delphi 2, 3, 4

By Kevin J. Bluck and James Holderness

Figure 1: Fro
dialog box.
From the Shell
Part I: Dialog Boxes You’ve Always Needed

The Windows common dialog boxes provided in Comdlg32.dll can be immensely useful,
but they don’t cover every situation. There are plenty of other commonplace system

dialog boxes you may need to use, but there are no clear instructions in the Windows doc-
umentation about how to access many of them. Trying to duplicate the same interface by
building a dialog box manually can be extremely frustrating and time consuming. It’s also
unnecessary, because those dialog boxes are available for anybody who knows where to
look. In this part of a two-part series on Windows shell dialog boxes, we’ll be revealing a
few of the well-known and undocumented dialog boxes provided by the shell that you can
use in your own applications.
m

Browsing for Folders
Most Delphi programmers know how to use the
VCL’s TOpenDialog to allow the user to browse
for files to open. Sometimes, however, you want
the user to browse for a folder, rather than a spe-
cific file. This is the purpose of the shell’s Browse
for Folder dialog box (see Figure 1). This dialog
box is available via the documented function
 the Windows shell: the Browse for Folder
SHBrowseForFolder, shown here (this function is
defined in the standard VCL ShlObj unit):

function SHBrowseForFolder(var BrowseInfo:

TBrowseInfo):

PItemIDList; stdcall;

This function takes only a single parameter, but
don’t be deceived. This parameter is a very compli-
cated record type: TBrowseInfo. The structure of
TBrowseInfo is as follows:

TBrowseInfo = packed record
hwndOwner: HWND;

pidlRoot: PItemIDList;

pszDisplayName: PChar;

lpszTitle: PChar;

ulFlags: UINT;

lpfn: TFNBFFCallBack;

lParam: LPARAM;

iImage: Integer;

end;

The hwndOwner data member contains the
handle of the window that will be the owner of
the browser dialog box. You may set this to 0 if
you don’t wish to specify an owner window
handle. The pidlRoot data member points to a
PIDL specifying the location of the “root” fold-
er to be shown in the dialog box. [For a descrip-
tion of PIDLs and their use, see “Shell
Notifications” by Kevin J. Bluck and James
Holderness in the March, 1999 Delphi
Informant.] Only that root folder and its sub-

On the Cover

function BrowseForFolderCallback(DialogHandle: HWND;

MessageID: UINT; PIDL: PItemIDList; Data: LPARAM):

Integer;

begin
// Respond to notification messages from the dialog.
case (MessageID) of

BFFM_INITIALIZED:

DialogInitialized(DialogHandle, Data);

BFFM_SELCHANGED:

HandleNewSelection(DialogHandle, PIDL, Data);

end;
Result := 0; // Always return 0.

end;

Figure 2: TFNBFFCallBack example.
folders will appear in the dialog box. This member can be set to
nil, in which case the root folder will be Desktop. The
pszDisplayName data member points to a buffer that will receive
the “display name” of the folder selected by the user. You must
ensure that the buffer you pass is capable of accepting at least
MAX_PATH number of characters. The lpszTitle data member
points to a null-terminated string that will be displayed above
the tree view of folders in the dialog box. This string can be any-
thing you like, but is most often used to give instructions for the
user. Be careful you don’t make this string very long, or it will be
truncated in a rather ugly fashion. The ulFlags data member
allows you to specify flags that will govern the types of folders
that will be shown in the dialog box, along with other dialog box
options. This data member can include zero, or more, of the val-
ues shown here, combined with a logical or operator:

// Browsing for directory.
// Find file-system directory.
BIF_RETURNONLYFSDIRS = $0001;

// Don't browse into net domains.
BIF_DONTGOBELOWDOMAIN = $0002;

// Leave room for status text.
BIF_STATUSTEXT = $0004;

// Find only file-system ancestors.
BIF_RETURNFSANCESTORS = $0008;

BIF_BROWSEFORCOMPUTER = $1000;

BIF_BROWSEFORPRINTER = $2000; // Find a printer.
BIF_BROWSEINCLUDEFILES = $4000; // Find anything.

Note that if you want the dialog box to actually show the custom
status text you specified in the lpszTitle data member, you must
include the BIF_STATUSTEXT flag. The lpfn data member is a
pointer to a function of type TFNBFFCallBack. This function type
is shown in the following:

TFNBFFCallBack = function(DialogHandle: HWND;
MessageID: UINT; PIDL: PItemIDList; Data: LPARAM):

Integer; stdcall;

This function is a callback, and can be used to control and
update the dialog box as the user interacts with it. It’s up to you
to implement this callback function in your code if you want to
take advantage of this facility. If you don’t wish to control the
dialog box, you may set this data member to nil. The lParam
data member allows you to specify some four-byte value, which
will be sent to the callback function specified in the lpfn data
member. This is most commonly some sort of pointer that will
be meaningful to you at the time of the callback. You may set it
to 0 if you wish. The iImage data member need not be set before
the call to SHBrowseForFolder; it will receive the system image
list index of the image associated with the folder the user decided
to select. Initialize it to 0 if you like.

The SHBrowseForFolder function returns the PIDL that uniquely
specifies the selected folder. You may convert this PIDL to a tra-
ditional path, assuming the folder is a file system object, using
the documented shell function SHGetPathFromIDList, or the
GetPathFromPIDL function provided in the kbsdPIDL unit
included with this article’s source code (see end of article for
download details). You, the caller, are responsible for freeing the
returned item identifier list, using either the Free method of the
IMalloc COM interface, or the PIDLFree procedure provided in
the kbsdPIDL unit. Don’t try to free the PIDL using FreeMem, or
any other method besides IMalloc or PIDLFree. If the user chose
the Cancel button in the dialog box, the return value will be nil,
5 April 1999 Delphi Informant
and nothing needs to be freed (although you won’t hurt anything
by doing so).

Now that we’ve shown the dialog box, let’s see how to control it in
response to user actions. This is the purpose of the callback function
we specify in the TBrowseInfo record. This callback is of type
TFNBFFCallBack, shown previously.

You have to reverse your usual thinking with this function.
Remember that you aren’t calling this function; rather, you are
implementing it, and the system will be calling it.

The DialogHandle parameter contains the window handle of the
dialog box. You may use this handle for any normal Windows pur-
pose, but it’s typically used for sending messages to the dialog box.
The MessageID parameter is not a TMessage record; rather, it is the
identifier of the message the dialog box is sending you via the call-
back. It can be one of these two values:

BFFM_INITIALIZED = 1; // The dialog is about to appear.
BFFM_SELCHANGED = 2; // The user picked something.

The PIDL parameter will contain whatever additional data is appro-
priate for the message. If MessageID is BFFM_INITIALIZED, this
value will be nil. If MessageID is BFFM_SELCHANGED, this
value will be a PIDL that identifies the folder the user has select-
ed. The Data parameter contains whatever value you assigned to
the lParam data member of the TBrowseInfo record. This can be
useful for passing a pointer to a Delphi component (as you will
see later), or any other four-byte value that interests you. An
abbreviated example of an implementation of this callback func-
tion is shown in Figure 2.

From within this callback, you can send three custom messages
back to the dialog box to change things in response to user
actions. Here are the message IDs:

// Changes the dialog's status text.
BFFM_SETSTATUSTEXT = WM_USER + 100;

// Enables or disables OK button.
BFFM_ENABLEOK = WM_USER + 101;

// Changes the selected folder.
BFFM_SETSELECTION = WM_USER + 102;

Typically, these messages are sent to update the dialog box in response
to user selections, signaled by the BFFM_SELCHANGED notifica-
tion. You can also send any other message you would normally be able
to send to a dialog box window. For example, you may send a
WM_SETTEXT message to change the dialog box’s title bar caption.

On the Cover

ram LParam

sed PChar pointing to new status text to set
sed True to enable, False to disable

if LParam is a path, PChar pointing to the path to select or
 if LParam is a PIDL PIDL identifying the folder to select

ssage parameter values.

Figure 4: The About Windows dialog box.

Figure 5: The Windows 95 Format dialog box.
Delphi doesn’t define a special message record type for these mes-
sages, so simply use the standard TMessage type. This is a variant
record type, but you should consider it to be defined as follows:

TMessage = record
Msg: UINT;

WParam: LPARAM;

LParam: LPARAM;

Result: UINT);

end;

You send these messages
using the standard API
calls SendMessage or
PostMessage, using the
window handle to the
dialog box provided by
the DialogHandle para-
meter in the callback
and a TMessage record, which you provide. Fill the message parame-
ters according to each message ID, as shown in Figure 3. Note that
the documentation in the Delphi Windows API Help file has the
parameters for BFFM_ENABLEOK backwards. An example of
updating the selection using a path is shown here:

PostMessage(DialogHandle, BFFM_SETSELECTION, True,

LPARAM(PChar(NewPath)));

The About Windows Dialog Box
If you feel the need for some reason, you can show the About
Windows dialog box (see Figure 4) in your applications. This dialog
box is customizable to a small extent, but it’s really only suitable for
displaying the Windows logo and text. Frankly, we’re surprised
Microsoft allowed any customization at all. They’ve provided just
enough leeway for practical jokers to cause mischief, but not
enough to make it generically useful for other applications. This
function is defined in the standard VCL ShellAPI unit:

function ShellAbout(Owner: HWND; ApplicationName: PChar;

OtherText: PChar; IconHandle: HICON): Integer; stdcall;

The Owner parameter identifies the window that will own the dialog
box. You may set this value to 0 if you wish to specify no owner. The
ApplicationName parameter contains text that will display in the title
bar of the dialog box, and on the first line of the dialog box after the
mandatory “Microsoft” text. If the string includes the “#” character,
this acts as a separator. In this case, the function will display the first
part before the separator in the title bar, and the second part on the
first line after the “Microsoft” text. The OtherText parameter contains
text that will be shown in the dialog box after the Microsoft version
and copyright text. The IconHandle parameter identifies an icon that
will be displayed in the dialog box. If this parameter is 0, the func-
tion displays the default Microsoft Windows or Microsoft Windows
NT icon. Note that these default Microsoft icons are quite large, so
showing a typical 32 x 32 icon will look rather unattractive. If the
function succeeds in displaying the dialog box, the return value is
non-zero; otherwise, the return value is zero.

Formatting Disks
The next function we’ll discuss, SHFormatDrive, displays the
Format dialog box (see Figure 5), and is semi-documented.
Currently, the SHFormatDrive function is not in the Platform
SDK documentation. However, Microsoft admits to its existence

Message ID WPa

BFFM_SETSTATUSTEXT Not u
BFFM_ENABLEOK Not u
BFFM_SETSELECTION True

False

Figure 3: SHBrowseForFolder update me
6 April 1999 Delphi Informant
and exports it from Shell32.dll by name. The Delphi definition of
the function is shown here:

function SHFormatDrive(Owner: HWND; Drive: UINT;

FormatID: UINT; OptionFlags: UINT): DWORD; stdcall;

Microsoft’s “official” documentation of this function, for now,
consists solely of Microsoft Knowledge Base article ID Q173688,
which, at press time, can be found on the Web at http://support.
microsoft.com/support/kb/articles/q173/6/88.asp.

http://support.microsoft.com/support/kb/articles/q173/6/88.asp
http://support.microsoft.com/support/kb/articles/q173/6/88.asp

On the Cover

Figure 6: The Change Icon dialog box.
The Owner parameter identifies the window that will own the dia-
log box. The “documentation” recommends you do not set this
value to 0, but we notice no ill effects from doing so. The Drive
parameter is where you specify a number that identifies the drive
you wish to format. This is zero-based, starting at the A: drive, e.g.
A: = 0, B: = 1, etc. You may only format one drive at a time. The
selected drive identifier will appear in the dialog box’s title bar cap-
tion. The FormatID parameter allows you to specify a “template” for
formatting. Usually, you will simply pass the constant value
SHFMT_ID_DEFAULT, which tells the dialog box to default to
the default format scheme for the disk type in question. In Windows
95, you may also pass the low-order word from the return value of a
prior call to this function to specify that the default scheme should
be whatever format scheme was used by the prior call. The
OptionFlags parameter takes bit-mask flags that allow you to set
defaults. Currently, only two are officially defined. The following
shows these flags and their values:

SHFMT_OPT_FULL = $0001; // Check "Quick Format".
SHFMT_OPT_SYSONLY = $0002; // Check "Sys Only".

Microsoft left the door open to define more, so you should ensure
that all other bits in the mask are off to avoid unexpected side
effects. The best way to do this is to set the bit-mask variable to 0
before setting desired flags.

Note that Windows 95 and NT implement different dialog boxes
for this function. We have observed several variations from the
documented standard for this function under NT 4.0. Setting
the SHFMT_OPT_FULL is supposed to deselect the “Quick
Format” checkbox, but it appears to actually do the opposite in
NT. Apparently, somebody programmed the logic backwards. It
works as expected in Windows 95. Also, setting the
SHFMT_OPT_SYSONLY flag prevents the dialog box from
appearing at all in NT, apparently because you can’t SYS a disk
under NT. You’d think NT would simply ignore the flag, but the
dialog box is completely suppressed instead. These flags are mutu-
ally exclusive in the Windows 95 dialog box, because these choic-
es are radio buttons. If you set both, SHFMT_OPT_SYSONLY
wins. The final NT mutation is the return value. Apparently, it
never returns anything except 0 for success, or SHFMT_ERROR
on failure, regardless of the reason. It also returns 0 if you set the
deadly SHFMT_OPT_SYSONLY flag. This eliminates some
capabilities of the return value advertised in the Knowledge Base
documentation, as will be explained next.

The Return value is a great example of how not to use a return value.
If the function failed for some reason, it returns one of three error
constants to identify the specific problem. These error constants are
shown here:

SHFMT_NOFORMAT = $FFFFFFFD; // Drive is not formatable.
SHFMT_CANCEL = $FFFFFFFE; // Last format was canceled.
// Error, but drive may be formatable.
SHFMT_ERROR = $FFFFFFFF;

If the function succeeded, under Windows 95, it returns the physi-
cal format ID of the last successful format. As mentioned, the low-
order word of this value can be passed on subsequent calls to
SHFormatDrive as the FormatID parameter to request a format of
the same scheme. NT, however, always returns only 0 for success.
Got all that? This means that to make any intelligent use of the
7 April 1999 Delphi Informant
return value, you must first test that it’s not one of the three error
constants, and, if not, then use the value for a completely different
purpose. Apparently, the developer who came up with this function
had never heard of reference parameters.

With this funky interface and the apparent problems in the NT ver-
sion of this function, it’s no wonder they don’t want to publicize it.

Windows NT and WideChar
Before we get involved in the completely undocumented
functions, there is an important point of which you should be
aware. Notice that the null-terminated string-type parameters for
the undocumented functions are mostly declared as type Pointer
instead of PChar. This is due to a little booby-trap, which is
commonly the case for undocumented functions. All these string-
type parameters declared as type Pointer take PAnsiChar on
Windows 95, and take PWideChar on Windows NT. There is no
choice of ANSI or UNICODE characters as would be expected
for a documented function. Windows 95 uses the PAnsiChar
version only, and Windows NT uses the PWideChar version
only — take it or leave it. If you want your applications to func-
tion correctly on both platforms, you’re going to have to check
what operating system is in use at run time. If it’s NT, you’ll
need to convert any string parameters to PWideChar before call-
ing the function. When the function returns, you’ll also need to
convert any returned strings back to the PAnsiChar type again. It
may be annoying, but that’s the price you pay for using undocu-
mented functions.

Choosing Icons
The first completely undocumented function we’ll be discussing is
PickIconDlg. This function shows a dialog box with which the user
can select an icon resource from a file (see Figure 6). It’s used by the
file type editor when selecting the icon to associate with a particular
file type. It’s also used in the shortcut properties dialog box when
changing the icon. This function is exported from Shell32.dll by
ordinal value 62, and the function declaration is as follows:

function PickIconDlg(Owner: HWND; FileName: Pointer;

MaxFileNameChars: DWORD; var IconIndex: DWORD):

LongBool; stdcall;

The Owner parameter identifies the window that owns the dialog
box. The FileName parameter points to a buffer containing the

On the Cover

Figure 7: The Run dialog box.
name of the initial file that the dialog box will be browsing for
icons. When the function returns, this buffer will contain the name
of the file in which the user eventually found the desired icon.
Because this is essentially a var parameter, and the new string could
be longer than the original, it’s best to provide a buffer capable of
holding MAX_PATH characters, plus a null terminator, rather than
directly casting a string-type variable. The MaxFileNameChars
parameter specifies the size, in characters, of the FileName buffer.
The IconIndex parameter takes the zero-based index of the icon
that will be selected when the dialog box opens. When the func-
tion returns, this parameter will be set to the index of the icon
last selected by the user.

If the user selects an icon, the return value is True. It’s False if the user
chooses the Cancel button, or the Close command on the System menu.

Running Applications
The next function, RunFileDlg, is surprisingly flexible. It’s the dialog
box you see when launching applications from the Run selection of
the Start button menu (see Figure 7). The function is exported from
Shell32.dll by ordinal value 61; here’s its function declaration:

procedure RunFileDlg(Owner: HWND; IconHandle: HICON;

WorkPath: Pointer; Caption: Pointer;

Description: Pointer; Flags: UINT); stdcall;

The Owner parameter identifies the window that owns the dialog
box. The IconHandle parameter is the handle of the icon that will
be displayed in the dialog box. If it’s nil, the default icon will be
used. The WorkPath parameter points to a string that specifies
the working directory for the application that is run. The Title
parameter points to a string to be placed in the title bar of the
dialog box. If it’s nil, the default title is used. The Description
parameter points to a string displayed in the dialog box, briefly
informing the user what to do. If it’s nil, the default description
is used. The Flags parameter is a set of bit flags that specify other
properties of the dialog box. The following is the full list of flags:

RFF_NOBROWSE = $01; // Removes the browse button.
RFF_NODEFAULT = $02; // No default item selected.
// Determines the work directory from the file name.
RFF_CALCDIRECTORY = $04;

RFF_NOLABEL = $08; // Removes the edit box label.
// Removes the Separate Memory check box (NT Only).
RFF_NOSEPARATEMEM = $20;

A nice feature of this dialog box is that it allows you to control
which applications the user may run. When the user selects the
OK button, the dialog box’s parent window is sent a notification
message with details of the program about to be started. The
notification is in the form of a WM_NOTIFY message with the
notification code set to RFN_VALIDATE (-510) and the lParam
8 April 1999 Delphi Informant
pointing to a TNM_RunFileDlg record. This record definition
can be seen in the following:

TNM_RunFileDlg = packed record
hdr: TNMHdr;

lpFile: Pointer;

lpDirectory: Pointer;

nShow: LongBool;

end;

The hdr data member is of type TNMHdr, a standard Windows data
type included with every WM_NOTIFY message as the first data in
the record pointed to by the pointer in the message’s LParam. In other
words, you can always assume the LParam will point to a TNMHdr,
and, depending on the message type, there may be some additional
data immediately following that record, as in this case. For the uniniti-
ated, the TNMHdr data type is shown here:

TNMHdr = packed record
hwndFrom: HWND;

idFrom: UINT;

code: UINT;

end;

The hwndFrom data member contains the window handle of the con-
trol sending the message. The idFrom data member contains the identi-
fier of the control sending the message. The code data member contains
the notification code that identifies the specific message being sent.

The “extra” data packaged after the TNMHdr record for this mes-
sage consists of three additional data members. The lpFile data
member points to a string containing the fully qualified path of the
file to be run. The lpDirectory member points to a string specifying
the working directory to be used by the application being run.
Finally, the nShow data member specifies whether the application
being run will be visible.

For this particular message, we’re only interested in testing the code
data member of the TNMHdr record to ensure we are receiving a
Run File validation message, and that we will have access to the
additional TNM_RunFileDlg data members. We know we have a
TNM_RunFileDlg record available when the TNMHdr record’s code
data member is equal to RFN_VALIDATE (-510). An example of
testing the notification message is shown here:

var
FileToRun: String;

...

if TheMessage.Msg = WM_NOTIFY then
if PNMHdr(TheMessage.LParam).code = RFN_VALIDATE then

WideCharToStrVar(PNM_RUNFILEDLG(

TheMessage.LParam).lpFile, FileToRun);

...

Notice how we cast the LParam parameter to type PNM_RunFileDlg
only after we have verified the TNMHdr code is RFN_VALIDATE.

The value assigned to the notification message’s return value deter-
mines whether the application will be run. The following is the list
of possible values:

RF_OK = $00; // Allow the application to run.
RF_CANCEL = $01; // Cancel operation; close the dialog.
RF_RETRY = $02; // Cancel operation; leave dialog open.

On the Cover
By default, this value is RF_OK, so unless you deliberately change
the message’s Result data member, the selected application will run.

Conclusion
These standard shell dialog boxes provide an important ability to
integrate your application with the Windows shell. You can use
them as drop-in solutions to common problems, saving time and
improving the polish of your applications. But we’ve only shown
you a few of them. Next month, we’ll show you several more dialog
boxes that you may find very useful in your applications. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\APR\DI9904KB.

Kevin J. Bluck is an independent contractor specializing in Delphi development.
He lives in Sacramento, CA with his lovely wife, Natasha. He spends his spare
time chasing weather balloons and rockets as a member of JP Aerospace
(http://www.jpaerospace.com), a group striving to be the first amateur organiza-
tion to send a rocket into space. Kevin can be reached via e-mail at
kbluck@ix.netcom.com.

James Holderness is a software developer specializing in C/C++ Windows
applications. He also runs a Web site on undocumented functions in Windows 95
(http://www.geocities.com/SiliconValley/4942). He is currently working for
FerretSoft LLC, where he helps create the Ferret line of Internet search tools
(http://www.ferretsoft.com). James can be reached via e-mail at
james@ferretsoft.com or jholderness@geocities.com.
9 April 1999 Delphi Informant

http://www.jpaerospace.com
http://www.geocities.com/SiliconValley/4942
http://www.ferretsoft.com

10 April 1999 Delphi Informant

DBNavigator
Filters / DataSets / Delphi 2, 3, 4

By Cary Jensen, Ph.D.
Delphi Database Development
Part VII: Filtering Datasets

Over the past half year, this column has explored the basics of database develop-
ment in Delphi. This month, this series continues with a look at techniques you can

use to limit the display of records in a table to only those that contain certain data val-
ues. This technique is often referred to as filtering, and, in one form or another, it
appears in almost every database application.
Delphi provides three general ways to filter a
DataSet. The most common technique, and the
one that is generally preferred in a client/server
environment, is to use a SELECT SQL query,
employing a WHERE clause to specify which
records to include in the view. The second tech-
nique is to use a range, which employs an index
with range criteria to select records. The final
technique is to use the Filter property. Each of
these techniques have advantages and disadvan-
tages, including major performance differences. As
a result, it’s not always obvious which technique
you should use. The following sections discuss
each of these techniques. At the end of this article,
you’ll find a prototype application you can use to
help you select which technique is appropriate for
your application.

Filter Using Queries
Last month, we looked at record-searching tech-
niques. One of the techniques we explored was
the use of a SQL SELECT query to select a sin-
gle record. This same technique can be used to
select more than one record. The only difference
between selecting a single record and selecting
more than one is the WHERE clause of the
SQL statement. A single record is selected if the
WHERE clause tests for data that appears in
only one record. However, if more than one
record matches the WHERE clause, the query
returns a subset of records.

For example, if you want to display a list of all
customer contacts whose last names are Little and
who live in the city of San Diego, you might use
the following query string:

SELECT * FROM CUSTOMER

WHERE CONTACT_LAST = 'Little' AND

CITY = 'San Diego'

In reality, however, it’s unlikely that you would
hard code such a query. Instead, you would use a
parameterized query — one where parameters
appear in place of hard-coded values for both the
contact last name and the city. For example, the
query may look like this:

SELECT * FROM CUSTOMER

WHERE CONTACT_LAST = :lname AND

CITY = :cityname

At run time, values are assigned to the parameters
before executing the query. In addition, if the
query is prepared in advance, each subsequent exe-
cution of the query will be faster than if you let
Delphi handle the preparation.

SQL SELECT queries that include WHERE
clauses don’t require the fields referenced in the
WHERE clauses to be indexed. However, an
index will nearly always improve the performance
of these types of queries. Consequently, it’s often a
good idea to consider this when designing the
tables you plan to query in this fashion.

Query preparation, and the use of query parame-
ters, has been discussed in detail in earlier parts of

DBNavigator
this series. However, it should be noted that the retrieval and manip-
ulation of small sets of data is at the heart of fast-performing,
client/server applications, and parameterized queries are an essential
part of this task.

Using Ranges
If you’re using Tables instead of Queries to work with your data, you
have two filtering options: use a range or a filter. In fact, there are
some situations in which ranges and filters should be used together
to arrive at the ideal subset of records.

Unlike SQL SELECT statements and filters, a range requires an
index. In other words, if you want to apply a range, such as dis-
playing all customers with a credit limit greater than US$1,000,
there must be at least one index where the credit limit field is the
first field in the index. Likewise, a city-based range requires at
least one index where city is the first indexed field. Simply hav-
ing an appropriate index isn’t enough — a range can only be
applied to the current index. If you want to set a range, and the
index that the range applies to is not the current index, you must
set the index before continuing.

You have two options when it comes to applying a range. The
first, and easiest to use, is the SetRange method. This method has
the following syntax:

procedure SetRange(const StartValues,

EndValues: array of const)

Both arrays passed as parameters must have the same number of
elements. The value in the first element of the first array corre-
sponds to the beginning (or lowest) values for the range on the
first field of the index. The value in the second element, if pro-
vided, identifies the lowest value for the range on the second
field of the index, and so on. The elements of the second array
identify the ending (or highest) values of the range for each
indexed field, with the first element corresponding to the first
field in the index; the second, if provided, for the second field in
the index; and so on.

The arrays that you pass to the SetRange statement don’t have to
have the same number of elements as there are fields in the current
index. For example, if the current index is based on the City, State,
and Country fields, it’s acceptable to set a range only on the City
field, or both the City and State fields, if desired.
11 April 1999 Delphi Informant

Figure 1: The example project RANGE demonstrates the use
of SetRange.
The following code snippet demonstrates how SetRange can be used
to limit the display of records in a table to those where the city field
contains “New York.” Assume that Table1 is a component defined
for a table named CLIENTS.DB. Furthermore, assume that this
table has an index named CityIndex, which is a single field index on
the City field of CLIENTS.DB. The following statement sets the
IndexName property to CityIndex, then sets a range to display only
those clients whose records contain New York in the City field:

Table1.IndexName := 'CityOrder';

Table1.SetRange(['New York'],['New York']);

To set a range based on a multi-field index, include more than one
set of starting and ending values in the array parameters. For exam-
ple, if you have a table named Invoices, and this table is using an
index based on the fields CustNo and InvoiceDate, the following
statement will display all records for customer C1573 for the dates
12/1/98 through 5/1/99:

Table1.SetRange(['C1573','12/1/98'],['C1573','5/1/99']);

Using ApplyRange
An alternative to using SetRange is to use the methods SetRangeStart,
SetRangeEnd, and ApplyRange. While these statements also require an
index (either primary or secondary), it permits fields to be explicitly
assigned their starting and ending values for the range without using an
array. The following example defines the same range demonstrated in
the preceding code snippet:

Table1.SetRangeStart;

Table1.FieldByName('CustNo').AsString := 'C1573';

Table1.FieldByName('InvoiceDate').AsString := '12/1/98';

Table1.SetRangeEnd;

Table1.FieldByName('CustNo').AsString := 'C1573';

Table1.FieldByName('InvoiceDate').AsString := '5/1/99';

Table1.ApplyRange;

Removing a range is much easier than applying one; use the
CancelRange method. This method has the following syntax:

procedure CancelRange;

In general, you should issue a Refresh to a Table after calling CancelRange.

The use of SetRange is demonstrated in the RANGE project shown
in Figure 1. (This and all other projects referenced in this article are
available for download; see end of article for details.) The relevant
code, found in the OnClick event handler for the button named
RangeButton, is shown in Figure 2.
procedure TForm1.RangeButtonClick(Sender: TObject);

begin
if RangeButton.Caption = 'Cancel Range' then

begin
RangeButton.Caption := 'Apply Range';

Table1.CancelRange;

Table1.Refresh;

end
else

begin
RangeButton.Caption := 'Cancel Range';

Table1.SetRange([Edit1.Text],[Edit2.Text]);

end;
end;

Figure 2: Code found in the OnClick event handler for the
button named RangeButton.

DBNavigator

Figure 3: The example project FILTER demonstrates the use
of Filters.
Using Filters
Filters, which were introduced in Delphi 2, make use of four prop-
erties of TDataSet descendants (Table, Query, ClientDataSet, and
StoredProc objects): Filter, Filtered, FilterOptions, and OnFilterRecord
(an event property). Using these properties, you can instruct a
DataSet to display fewer than all of its records. What makes filtering
special is that filters don’t require an index. Furthermore, if an index
is available, a filter will use it. This was not always the case. In
Delphi 2, filters were inherently slower than ranges because they
didn’t use indexes. In Delphi 4, at least, performance tests indicate
that filters make use of indexes when possible. That filters use index-
es isn’t discussed in the online documentation, and I haven’t tested
filters in Delphi 3. Nonetheless, filters are more widely applicable
than the other record-limiting techniques.

Although the primary application of filters is to limit the records
that are displayed in a DataSet, there is an additional capability
offered by filters that is unmatched by ranges and SELECT
queries. Specifically, filters permit you to display an entire data-
base, yet still navigate between only the records that match the fil-
ter. For example, you can set a filter to match records based on the
state of California, but still display all records in the DataSet.
Then, using the four filter-specific navigation methods —
FindFirst, FindLast, FindNext, and FindPrior — you can move to
the first, last, next, and previous record where the Customer
resides in California, skipping over any records in between.

As mentioned, some filters appear to use indexes. Specifically, simple
filters based on a single field using the Filter property, as opposed to
the OnFilterRecord event handler, will use an index if it’s available.
However, filters where the Filter property uses complex expressions
(using AND and OR), as well as those that use an OnFilterRecord
event handler, don’t use indexes, and are inherently slower than
index-based alternatives.

Because these types of filters don’t make use of indexes, the num-
ber of records being filtered dramatically influences filter perfor-
mance, with an increase in record number producing poorer per-
formance. By comparison, SELECT queries that include
WHERE clauses, filters that use indexes, and index-based ranges
are influenced very little by the number of records in the DataSet.
As a result, if you must use a filter that can’t use an index, it’s best
to first use a range to limit the number of records in the current
view before applying a filter to fine-tune the selection.

As implied in this section, there are three general ways to use fil-
ters. The first use employs only properties, while the second
makes use of the OnFilterRecord event handler. The third use
employs a filter, using either properties or events, but provides
filtered navigation even though all records are displayed. Each of
these is described in the following sections.

Filtering with Properties
There are two properties that, when used together, produce a fil-
tered DataSet. These properties are Filter and Filtered. Filtered is a
Boolean property you use to turn the filter on and off. If you want
to filter records, set Filtered to True; otherwise, set Filtered to False.

When Filtered is set to True, the DataSet uses the value of the Filter
property to identify which records will be displayed. You assign to
this property a string that contains at least one comparison operation
involving at least one field in the DataSet. You can use any compari-
son operators, including =, >, <, >=, <=, and <>. As long as the field
12 April 1999 Delphi Informant
name doesn’t include any spaces, you include the field name directly
in the comparison without delimiters. For example, if your DataSet
includes a field named Country, you can set the Filter property to the
following value to filter only for customers in the US:

Country = 'US'

If your field name includes a space, you must enclose the field name
in brackets. For example, if your DataSet is a Paradox table, and you
want to display only those records where the customer’s last name is
Jones, and the field name in the table is “last name,” assign the fol-
lowing value to the Filtered property:

[last name] = 'Jones'

These examples have demonstrated only simple expressions, which,
as described earlier, will result in the filter using an index if one is
available. However, complex expressions can be used. Specifically,
you can combine two or more comparisons using the AND, OR,
and NOT logical operators. Furthermore, more than one field can
be involved in the comparison. For example, you can use the follow-
ing Filter property value to limit records to those where the City
field is San Francisco and the last name is Martinez:

City = 'San Francisco' and [last name] = 'Martinez'

Simply assigning a value to the Filter property doesn’t automatically
mean that records will be filtered. Only when the Filtered property is
set to True does the Filter property actually produce a filtered
DataSet. Furthermore, if no value appears in the Filter property, set-
ting Filtered to True has no effect.

The use of the Filter and Filtered properties is demonstrated in the
example project FILTER shown in Figure 3. This project contains an
Edit control, in which the user can type a filter string. When the Apply

Filter button is clicked, the event handler assigns the Text property of
this Edit to the Filter property of the DataSet. Figure 3 shows this form
after a Filter string has been entered. Notice that only those records that
match what is in the Filter text box are displayed in the form’s DBGrid.

The main form in the FILTER project also contains two checkbox
components. These components control a third filter-related property
of DataSets: the FilterOptions property. This property is a set property
with two possible flags: foCaseInsensitive and foNoPartialMatch. When
foCaseInsensitive is included in the set, the filter is not case sensitive.

Figure 4: The example project ONFILT demonstrates the use of
OnFilterRecord.

DBNavigator

procedure TDataModule2.Table2FilterRecord(DataSet: TDataSet;

var Accept: Boolean);

begin
if (Table2.FieldByName('SaleDate').Value >= StrToDate(

'1/1/'+IntToStr(Form1.UpDown1.Position))) and
(Table2.FieldByName('SaleDate').Value <= StrToDate(

'12/31/'+IntToStr(Form1.UpDown1.Position))) then
Accept := True

else
Accept := False

end;

Figure 5: Code behind the OnFilterRecord event handler.

Figure 6: The example program TESTFILT can be used to test fil-
tering techniques with your data.
When foNoPartialMatch is included in the set, partial matches are
excluded from the filtered DataSet. The foNoPartialCompare flag only
applies for filters that include multiple conditions or multiple fields.

Using the OnFilterRecord Event Handler
There is a second, somewhat more flexible way to define a filter.
Instead of using the Filter property, you can attach code to the
OnFilterRecord event handler for the DataSet. This event handler is
passed a Boolean parameter by a reference that you use to indicate
whether or not the current record should be included in the DataSet.
From within this event handler, you can perform almost any test you
can imagine. If, based on this test, you wish to exclude the current
record from the DataSet, you set the value of the Accept actual para-
meter to False (this parameter is True by default). Note, however, that
even though you can perform the exact same test using Filter and
OnFilterRecord, the event-based technique never uses an index, and,
therefore, should be avoided with large datasets.

The use of OnFilterRecord is demonstrated in the project
ONFILT.DPR, shown in Figure 4. When your user checks the Show

orders for the following year only checkbox, the Filtered property of the
DataSet (Table1 in DataModule2) is set to True. The year to be fil-
tered on is controlled by an UpDown control. The actual filtering in
this case is being performed in the OnFilterRecord event handler for
the DataSet. Figure 5 shows the code attached to this event handler.

This code uses the Position property of the UpDown control (on
Form1) to accept only those records within the specified year. If the
current record passes this test, the value of Accept is set to False.
13 April 1999 Delphi Informant
It’s important to note that if you set the Filter property to a filter
string and assign code to the OnFilterRecord property, both will be
applied when Filtered is True. That is, only those records that
match the filter string and those that are accepted by the event han-
dler will appear in the DataSet.

As mentioned earlier, indexes are never used when you assign code
to the OnFilterRecord event handler. Consequently, you should use
this technique only when there is no other reasonable way to per-
form the filter. Furthermore, if the dataset that you are filtering
contains a large number of records, you should first use a SQL
SELECT statement or a Range to limit the size of the dataset.

Navigating Using a Filter
Whether you have set Filtered to True or not, you can still use a
Filter for the purpose of navigating selected records. For example,
although you may want to view all records in a database, you may
want to quickly move between records that meet specific criteria.
For example, you may want to be able to quickly navigate
between those records where an unpaid account balance exists.

The DataSet object surfaces four methods for navigating using a fil-
ter. These methods are FindFirst, FindLast, FindNext, and FindPrior.
When you execute one of these methods, the DataSet will locate the
requested record based on the current Filter property or
OnFilterRecord event handler. This navigation, however, doesn’t
require that the Filtered property be set to True.

Filters and Performance
There are some general rules of thumb you can follow when you’re con-
cerned about filtering performance. When using a remote database serv-
er, use prepared SELECT queries whenever possible. If it’s not possible,
use either ranges or filters that make use of indexes. The approach is defi-
nitely different when using a Table component. In those instances, use a
range or a filter that uses an index. Furthermore, if you absolutely must
use a filter that doesn’t make use of an index, such as a filter that employs
an OnFilterRecord event handler, do so only when the Table points to a
dataset that contains few records (less than 500 or 1,000 records).

As mentioned in the last installment of this series, if you have any
doubts, and particularly if fast performance is paramount, you
should test your alternatives. I put together a small test application
called TESTFILT, shown in Figure 6. This application permits you
to test the various filtering methods against one another.

DBNavigator
Using TESTFILT
While TESTFILT should be fairly easy to use as it is, you will likely
want to make some changes to it before beginning your testing. The
first thing you must do is adjust the constants defined in the inter-
face section of the main.pas unit. These permit you to choose a data-
base alias, a table, and a single field to be filtered. You must also
define the parameterized query that will be used for the query-based
filtering. In addition, if you’re using a remote database that requires a
user name and passwords, these also can be defined with these con-
stants. The following is an example of these constant definitions for
use with the InterBase CUSTOMER table that ships with Delphi:

const
DatabaseAlias = 'IBLOCAL';

DatabaseUserName = 'SYSDBA';

DatabasePassword = 'masterkey';

FilterFieldName = 'CUST_NO';

SQLString =

'SELECT * FROM CUSTOMER WHERE (CUST_NO = :cust)';

Table1TableName = 'CUSTOMER';

Most of this information is used to initialize a Database, a Query, and
a Table component used in the testing. This is shown in the OnCreate
event handler from this project’s data module (see Figure 7).

The only other adjustment that you might need to make involves the
assignment of the query parameter. This occurs in two places: once in
the Button1 OnClick event handler and again in the Button2 OnClick
event handler. The following is how this line appears when testing the
CUSTOMER table, in which the CUST_NO field is an integer field:

DataModule1.Query1.Params[0].Value := StrToInt(Edit1.Text);

If the field against which you’re testing the filter isn’t an integer, you
must remove the StrToInt call and either replace it with an appropri-
ate conversion function, or omit it altogether if your field is a String.

I ran this application to test filtering in four situations. Two of these
involved small datasets of less than 100 records, and two of these
involved large ones, containing approximately 100,000 records. In
14 April 1999 Delphi Informant

procedure TDataModule1.DataModule1Create(Sender: TObject);

begin
Database1.AliasName := main.DatabaseAlias;

Database1.Params.Clear;

Database1.Params.Add('USER NAME=' + DatabaseUserName);

Database1.Params.Add('PASSWORD=' + DatabasePassword);

Query1.SQL.Add(main.SQLString);

Query1.Prepare;

Table1.TableName := main.Table1TableName;

Table1.Open;

FilterFieldObject := Table1.FieldByName(FilterFieldName);

end;

Figure 7: The OnCreate event handler from example program
TESTFILT’s data module.

Filter, Filter,
Select Range Property Event

Small Local 4810 50 60 301
Large Local 4627 60 181902 602260 *
Small Remote 871 2514 2013 2634
Large Remote 1080 3868 2813 4869400 *

Figure 8: 100 subset selections measured in milliseconds
(* estimated).
addition, one dataset of each size was a local Paradox table, and one
each was an InterBase table. In all cases, I ran the test against an
indexed integer field.

The results are shown in Figure 8. These reveal that the SELECT
query was by far the best choice for filtering the InterBase table,
with the performance largely unaffected by the size of dataset. This
is what you might expect, and it’s comforting to observe this effect.
Also noteworthy was the fact that the similarity in query perfor-
mance between small and large datasets was also observed with
respect to local tables. However, unlike with InterBase tables, this
query performance wasn’t the best choice, being actually the worst
option for filtering a small local table.

Another surprising result was the Filter property performance.
The Filter property was excellent for all but the large local table,
beating out the Range method. For a large local dataset, however,
the performance of Filter was very poor. I can’t explain this effect,
other than assuming that the BDE generates a SQL query when
you use a simple Filter on remote databases, but must sequentially
scan local datasets. As you learned in the last installment of this
series, sequential record access with local tables is extremely fast
with small datasets. If this is correct, then the assumption that I
made earlier in this column — that only filters can make use of
indexes — is incorrect.

The final result to note is that when using remote tables, and espe-
cially when using large tables, the OnFilterRecord event handler was
the slowest. In fact, its performance was so poor that I estimated its
speed by running only 10 repetitions, then multiplying the result by
10. Running 10 repetitions took over eight minutes on the large
remote table, and I estimated that 100 repetitions would have taken
more than 81 minutes. This compares to just about one second for a
SELECT query, and about three and two seconds for ranges and
property-based, index-using filters, respectively.

Conclusion
Delphi provides you with a number of solutions when it comes to
filtering. Which technique you use will depend on the number of
records in the dataset, and whether your data is remote or local.
Also, if performance is important (and when dealing with a large
database it is almost always important) you should create some real-
istic tests to determine which filtering technique is best. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\APR\DI9904CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

15 April 1999 Delphi Informant

Algorithms
List Search Algorithms / Delphi 1-4

By Rod Stephens

type
TLongArray

PLongArray

// Perform an
function Exha

min, max: L

var
i: Longint;

begin
for i := mi

if (list^

Result

Exit;

end;
// We did n
Result := 0

end;

Figure 1: An
Three Searches
Delphi Implementations of Classic Techniques

Searching for an item in a list is a common programming task. For small lists, a pro-
gram can simply look through the items until it finds its target, or reaches the end of

the list. For larger lists, this is inefficient. This article describes three techniques for
searching lists: exhaustive search, binary search, and interpolation search. Using these
algorithms, you can quickly and easily search lists of any size.

e

Exhaustive Search
To perform an exhaustive (or linear) search, a pro-
gram starts at the beginning of the list and exam-
ines the items in turn until it finds either its target
or the end of the list. This method is simple, so
it’s easy to implement and debug.

The ExhaustiveSearch function searches a resizable
array for a target value (see Figure 1). It returns the
index of the target in the array if it’s present. It
returns 0 if the target isn’t in the array. This routine
is reasonably fast for very small lists. If the list con-
tains N items, the program will need to examine an
average of N / 2 items to locate a specific target
value. To conclude an item isn’t present, however,
the function must search every item in the list.

If the list is sorted, the exhaustive search function
can do slightly better. As it searches the list, if the
routine encounters a value larger than the target
value, it can stop searching. Because the list is
sorted, when the function finds a value greater
= array[1..10000000] of Longint;

= ^TLongArray;

 exhaustive search of a list.
ustiveSearch(target: Longint; list: PLongArray;

ongint): Longint;

n to max do
[i] = target) then begin
:= i;

ot find the target; return 0.
;

xhaustive search function.
than the target, it has passed the position where
the target would have been if it were present.

The code in Figure 2 shows the revised exhaus-
tive search function. For a list containing N
items, this version still takes an average of N / 2
steps to locate a target item that is in the list.
When it searches for an item that is not present,
however, it can conclude that the item is missing
in an average of N / 2 steps instead of the N
steps needed before.

Binary Search
Exhaustive search is so simple that it’s quite fast
for small lists. It’s also easy to implement and
debug. For larger sorted lists, more sophisticated
techniques, such as binary search, can be much
faster. A binary search examines the value in the
middle of the list and compares it to the target. If
the target and middle items are the same, the
search is over. If the target is larger than the mid-
dle item, the program continues by searching the
larger items in the list. If the target is smaller, the
program continues by searching the smaller items.

Figure 3 graphically shows a binary search for the
target value 77. When the program starts, the tar-
get could lie in any position with index 1 through
10. It compares the target 77 to the item in the
middle of the list. That item has value 71. Because
77 is greater than 71, the program continues to
search for the target in the larger half of the list.
This includes those items with indexes 7 through
10. With a single comparison, the program has
eliminated all the other items from consideration.

Next, the program compares the target to the value
in the middle of the items still under consideration.
Because the program is now considering items with

Algorithms
indexes 7 through 10, the middle item has index 8 and value 83. The
program compares that item to the target. Because 77 is less than 83,
the search continues in the smaller half of the items still being consid-
ered. That includes only the item with index 7 and value 77.
16 April 1999 Delphi Informant

// Perform an exhaustive search of a sorted list.
function ExhaustiveSearch(target: Longint;

list: PLongArray; min, max: Longint): Longint;

var
i: Longint;

begin
for i := min to max do

if (list^[i] >= target) then
Break;

if (i > max) then
Result := 0 // Not found.

else if (list^[i] = target) then
Result := i // Found.

else
Result := 0; // Not found.

end;

Figure 2: An exhaustive search function for sorted lists.

Figure 3: A binary search for the target value 77.

// Perform a binary search of a sorted list.
function TSearchForm.BinarySearch(target: Longint;

list: PLongArray; min, max: Longint): Longint;

var
mid: Longint;

begin
// The target's index is always between min and max.
while (min <= max) do begin

mid := Round((max + min) / 2);

if (target = list^[mid]) then // Here it is.
begin

Result := mid;

Exit;

end
else if (target < list^[mid]) then

// Search the left half.
max := mid - 1

else
// Search the right half.
min := mid + 1;

end;
// If we get here, the target is not present.
Result := 0;

end;

Figure 4: A binary search function for sorted lists.

Figure 5: An interpolation search for the target value 77.
Now the program compares the target to the only item left. The two
values match, so the program has found the target. In this example,
binary search located the target after examining three items in the
list. An exhaustive search would have needed to examine seven items
to find the value 77. The difference here is small. In larger lists, a
binary search can be much faster than an exhaustive search.

Every time the binary search examines an item in the list, it divides in
half the number of items that must be considered. If the list contains N
items, the algorithm can divide the list in half at most log2(N) times
before there is only one item left to consider. At that point, the program
has either found the target, or the target isn’t present in the list. The
time log2(N) is much faster than the average of N / 2 steps required by
exhaustive search. For example, if the list contains one million items,
exhaustive search will take an average of 500,000 steps to locate an
item. Binary search will need only log2(1,000,000), or roughly 20 steps.

Figure 4 shows the code for a binary search function. The key to
this function is that it always updates min and max, so min <= target
index <= max. Each time the function compares the target to test
items, it raises min or lowers max. Eventually, it either finds the tar-
get, or raises min and lowers max until min > max. At that point,
because there are no values between min and max, the target must
not be in the list.

Interpolation Search
Binary search is fast because it eliminates many items from considera-
tion without examining them. If the items in the list are numeric and
reasonably evenly distributed, you can make the search eliminate even
more items at each step using interpolation. Interpolation is the process
of using known values to guess an unknown value. In this case, it
means using known item positions to guess the target item’s position.

For example, suppose you have a list of 50 values between 1 and 100,
and you want to locate the target value 70. Because 70 is 70 percent of
the way between the values 1 and 100, you would expect the target to
lie 70 percent of the way through the list. In this example, that would
be 70 percent of the way through a list of 50 items at position 35.

In structure, interpolation search is similar to binary search. It picks
an item in the list and compares it to the target. If the target and
test items have the same value, the search is over. If the target is larg-
er than the test item, the algorithm continues by searching the larger
items in the list. If the target is smaller, the algorithm continues by
searching the smaller items.

The difference lies in how the two algorithms select the test item to
compare with the target. Binary search selects the item in the middle of
the indexes still being considered. Interpolation search uses interpolation
to pick an item that is probably very close to the target’s actual position.

This process is shown graphically in Figure 5. The program is
searching for the target value 77 in a list of 10 items with values
between 1 and 100. Because 77 is 77 percent of the way between
the minimum and maximum values 1 and 100, the program looks
at the item that is 77 percent of the way through the list. There are
10 items in the list, so that is at index 7.7, which rounds to index 8.

The program compares the value in position 8 with the target.
Because 77 is less than 83, the program continues to search the
items with indexes between 1 and 7. The program examines the
items with indexes 1 and 7. They have values 1 and 77. Because
77 is 100 percent of the way from the value 1 to the value 77,

Algorithms

// Perform an interpolation search of a sorted list.
function TSearchForm.InterpolationSearch(target: Longint;

list: PLongArray; min, max: Longint): Longint;

var
mid: Longint;

begin
while (min <= max) do begin

// Watch for division by zero.
if (list^[min] = list^[max]) then begin

// If this isn't the item, it's not here.
if (list^[min] = target) then

Result := min

else
Result := 0;

Exit;

end;
// Compute the dividing index.
mid := Round(min + ((target - list^[min]) *

((max - min) / (list^[max] - list^[min]))));

// Check that we are in bounds.
if ((mid < min) or (mid > max)) then begin

// The target isn't here.
Result := 0;

Exit;

end;

if (target = list^[mid]) then // The target is here.
begin

Result := mid;

Exit;

end
else if (target < list^[mid]) then

// Search the left half.
max := mid - 1

else
// Search the right half.
min := mid + 1;

end; // End while (min <= max) do loop.

// If we got to this point, the target isn't here.
Result := 0;

end;

Figure 6: An interpolation search function for sorted lists.
the program examines the item with index 100 percent of the
way from index 1 to index 7. That item has index 7 and matches
the target value. The interpolation search finds its target value in
its second step.

In this example, interpolation search located the target in two steps.
Binary search took three steps to find the target in the earlier exam-
ple, and exhaustive search would need seven steps. Interpolation
search is the fastest, though the difference in speed is much smaller
than the difference between binary and exhaustive search.
17 April 1999 Delphi Informant

Figure 7: The example program, Search, in action.
For example, to locate a target in one million items, exhaustive search
needs an average of 500,000 steps, binary search needs only 20 steps,
and interpolation search might need as few as four or five steps. The dif-
ference between binary and interpolation search is significant, but less
impressive than the difference between exhaustive and binary search.

Figure 6 shows an interpolation search function. If you compare it
to the binary search routine, you will see how similar they are. The
difference lies in how they calculate the value mid giving the index
of the test item to compare with the target. Interpolation search cal-
culates this middle index using the following statement:

mid := Round(min + ((target - list^[min]) *

((max - min) / (list^[max] - list^[min]))));

This code creates two special cases the program must consider. First,
if list^[min] = list^[max], then this equation causes a divide-by-zero
error. In particular, if the program narrows the list of items until
min = max, these values will be the same. To prevent the divide-by-
zero error, the program checks whether list^[min] = list^[max] before
it calculates the new middle index.

Second, this code sometimes produces a test index that’s smaller
than min, or greater than max. Occasionally, this value can be far
outside of this range. The new index may lie beyond the bounds
of the list array, or it may even be negative. Fortunately, the only
way the test index can be less than min or greater than max is if
the target item’s index is less than min or greater than max.
Because the program always updates min and max so the target
item lies between them, the target must not be present. After it
calculates mid, the program compares it to min and max to see if
it can stop searching.

The Searches Compared
The example program Search demonstrates the search algorithms
(Search is available for download; see end of article for details).
Enter a number of items in the # Items text box, and click the
Create List button. The program will create a list of the size you
specified. It fills the list with random values, where each value is
1 to 5 greater than the one before it. The Max Value label shows
the largest value in the list so you can pick values to locate.

Enter a value in the Target text box, and the number of times the
program should repeat the searches in the # Trials text box. Then
click the Search button to make the program search for the target
using the methods you’ve checked. To get meaningful timing
results for the binary and interpolation searches, you may need to
use a large number of trials. Be sure the Exhaustive check box is
checked only for small lists, and small numbers of repetitions.

Conclusion
Figure 7 shows the Search program in action. In this case, the pro-
gram found the target value 25 million in a list of 10 million items.
Exhaustive search took more than 8 million steps in just under one
second. Binary search needed only 23 steps and interpolation search
needed only three. Binary and interpolation search were so fast, their
times did not even register.

Exhaustive search is fast enough for searching short lists. It is
also easy to implement and debug. That makes it a good choice
for small lists, or when you just need to get some code running
quickly. For larger lists, binary search is much faster, although it
is more complex. Interpolation search is usually faster still,

Algorithms
though it has the disadvantage of working easily only with
numeric lists. The improvement in speed is also not as great as
the improvement of binary search over exhaustive search, so you
should probably use binary search if you are working with a list
of non-numeric values.

Evaluate your needs and pick the algorithm that’s right for you.
One of these three techniques can satisfy almost any program’s
searching needs. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\APR\DI9904RS.

For more information on searching and other algorithms, take a look at Rod
Stephens’ book, Ready-to-Run Delphi 3.0 Algorithms [John Wiley & Sons,
1998]. The algorithms run in Delphi 3 or later. Learn more at http://www.
delphi-helper.com/da.htm, or contact Rod at RodStephens@delphi-helper.com.
18 April 1999 Delphi Informant

http://www.delphi-helper.com/da.htm
http://www.delphi-helper.com/da.htm

19 April 1999 Delphi Informant

On Language
Interfaces / Class Hierarchies / OOP / Delphi 2, 3, 4

By Eric Whipple
The Interface Advantage
When It Comes to Flexibility, Interfaces Edge Out Hierarchies

J ust when you thought you’d mastered the object model, the paradigm shifts again.
Often, developers now use the inheritance (or hierarchical) model to create fast and

flexible “family trees” of classes for the objects in their systems. Inheritance, with its
built-in code reuse, enables applications to be developed faster, and allows object
methods to behave polymorphically.
In spite of these impressive advantages, however,
hierarchical systems can be alarmingly inflexible
and proprietary. Seemingly trivial deviations in
the structure of a class can produce costly diffi-
culties in creating a practical and maintainable
hierarchy. Therefore, as distributed objects come
into the mainstream, the development commu-
nity is beginning to embrace the interface model
of object development. The interface model pro-
vides significant advantages in flexibility over the
hierarchical model, yet continues to support the
power of object-oriented techniques, such as
polymorphism.

An Interface Defined
An interface is essentially a set of method decla-
rations that collectively defines some set of func-
tionality. For example, the IReports interface
might contain declarations for the following
reporting functions:

function GetReport(ReportName: string):
Boolean;

function CloseReport(ReportName: string):
Boolean;

function PrintReport(ReportName: string):
Boolean;

function DoDaysEndReports: Boolean;

function GetReportCount: Integer;

function ReportIsOpened(ReportName: string):
Boolean;

The important difference between an interface
and a class is that the interface only includes
the method declarations. Classes that provide
implementations for the methods in that inter-
face are free to do so in whichever manner is
appropriate. In addition, client-side variables
can hold a reference to any server object that
implements that interface.

A class, on the other hand, not only declares the
methods, but also provides a specific implemen-
tation for each one. Object instances of the
TReports class will handle method requests in
exactly the same way. In addition, client-side
variables are restricted to holding references to
server objects instantiated from the TReports
class and its descendants.

Interfaces allow server objects to concisely
declare exactly which sets of functionality they
can provide to clients (i.e. which interfaces they
implement), without restricting the client to a
particular implementation of those interfaces. If
a server object is declared to implement a par-
ticular interface, it’s essentially creating an
unbreakable contract with its clients, i.e. that it
can handle a specific set of requests, formatted
in a certain way. The contract that’s created,
however, doesn’t include information related to
the implementation and handling of these
requests. It simply guarantees a certain type of
result, given a certain type of input. This con-
tract provides the ultimate example of the
“Black Box Theory.”

Hierarchies ...
The best way to discover the power of interfaces
is to put them into practice. Consider the fol-
lowing scenario. A distributed system is being
developed for a local hospital. The reporting
server object is required to perform the report-
ing methods previously mentioned. The
DoDaysEndReports method compiles and prints

On Language

module ReportsServer1

{
interface IReports
{

boolean GetReport(in wstring ReportName);
boolean PrintReport(in wstring ReportName);
boolean CloseReport(in wstring ReportName);
boolean DoDaysEndReports();
long getReportCount();
boolean ReportIsOpened(in wstring ReportName);

};
};

Figure 1: The IReport interface contains method declarations,
but no implementations.
a set of daily reports
related to the produc-
tivity of the hospital.
Each department of
the hospital has a dif-
ferent set of reports
that needs to be gen-
erated. In addition to
day’s-end reporting,
some departments
also require month’s-
end reporting to be
done automatically
on the last day of the
month. To avoid a
maintenance night-
mare, the IT depart-
ment decides to write
one client-side
reporting module to
be used by all depart-
ments.

Under a traditional class-based system, the server object’s
TReports class resembles the code shown in Listing One on page
22 (this and all subsequent code is available for download; see
end of article for details). It contains all of the previously men-
tioned methods, including specific implementations for each.
The client module code is shown in Listing Two (beginning on
page 22). Notice the declaration of the ReportServer variable. It’s
of type TReport; consequently, the ReportServer variable can only
hold a reference to a server object instantiated from the TReports
class, or one of its descendants.

The problem that arises in this situation is not in design or develop-
ment, but in maintenance. Because all the reporting servers are required
to belong to the same TReport family, architects and developers who
maintain the reporting system as it changes or grows are required to
have an intimate knowledge of the entire TReport genealogy. In a simple
example such as ours, this is less evident. But in a more complex hierar-
chy, with many generations, finding the appropriate class from which to
inherit can involve quite a bit of research. For example, the TQuery
component descends from TDBDataset, which descends from
TBDEDataset, which descends from TDataset. Deciding which of these
classes from which to inherit a new class depends, among other things,
on what functionality was declared at what level (generation).

Interfaces, on the other hand, do not require any knowledge of ances-
tral functionality. As long as the new class can perform the methods
required by the interface, it is perfectly suitable for use by the client.

TCustomer Class
General Information

Accounts Payable Information
Insurance Information

TInPatient Class
Patient Information

Figure 2: The patient-tracking system
hierarchy.
20 April 1999 Delphi Informant
... or Interfaces?
Now let’s consider the same example using interfaces. Instead of
a TReports class, there’s an IReports interface (see Figure 1). It
contains the declarations for the noted methods, but no imple-
mentations. Each department has its own server object, instanti-
ated from a class that implements the IReports interface. The
departmental servers each implement the IReports methods in a
way specific to a particular department. The classes that provide
reporting to each department are unrelated through inheritance;
that is, they have no common ancestors. The unifying thread
between them is that each server provides reporting in a stan-
dardized way through the methods of the IReports interface.

The client module shown in Listing Three (beginning on page
23) is similar to the client code, with one important difference.
The ReportServer variable is now declared to be of type IReports.
In essence, this means that the ReportServer variable can hold a
reference to any object that implements the IReports interface. It’s
this difference that enables the client object to not only be
unaware of the logic involved in generating the correct set of
reports, but also of the ancestral history of its server. It simply
gives a request and gets a result.

The advantage to interfaces, then, is that they allow different objects
to implement the same methods in different ways. But wait a
minute! That’s the definition of polymorphism — a technique that’s
certainly not particular to interfaces. As long as all the server objects
belong to the same hierarchy of classes, they can behave polymor-
phically, and achieve the same results that interfaces do. While this
is true, it’s also true that the maintenance of a hierarchy of classes
can produce another set of problems. In an expanding application,
finding a place to insert a new entity in an existing hierarchy can be
a difficult task. Let’s consider another example.

The Trouble with Hierarchies
The hospital is also creating a patient-tracking system. The class
hierarchy shown in Figure 2 begins with a TCustomer class. The
TCustomer class, designed to be used for general office visits (e.g.
check-ups, physicals, etc.), contains properties and methods related
to the following types of information:

General
Accounts Payable
Insurance

The TCustomer class has a direct descendant: TInPatient. The
TInPatient class inherits all the properties and methods of the
TCustomer class. It also specifies a number of properties and
methods specific to customers requiring more serious medical
attention, as well as a more comprehensive system of medical
documentation. For 90 percent of the hospital’s business, this
hierarchy works perfectly. Customer variables in the client appli-
cation are defined as type TCustomer, and are, therefore, able to
hold a reference to any object instantiated from the TCustomer or
the TInPatient classes.

Problems begin when new entities are introduced into the sys-
tem. For example, the hospital requires its doctors to spend one
Saturday every three months at the hospital’s free clinic for the
homeless. For legal reasons, the doctor is required to keep
detailed records of the treatment given to each person. In this
case, the accounts payable and insurance information aren’t
applicable. In effect, all the people the doctor sees are InPatients,
but none of them are Customers; many of the attributes that

TCustomer Class
Accounts Payable

Insurance Information

TInPatient Class
Patient Information

TClinicPatient Class
Patient Information

TGeneral Class
General Information

Figure 3: The new Med system hierarchy.

On Language

TCustomer

TInPatient

TClinicPatient

IGeneralInfo IAccountsPayable IInsuranceInfo IPatie

Figure 4: The Med system interface solution.
identify someone as a customer (e.g. Accounts Payable,
Insurance, etc.) don’t apply to clinic patients.

Under this scenario, the hospital application can become
extremely inefficient. For each clinic patient, an InPatient object
must be created so that medical information can be properly
logged. Because the TInPatient class is a descendant of the
TCustomer class, it inherits all the properties and methods of the
TCustomer class. During the creation of the InPatient object, its
inherited class properties will have memory allocated for them
that will never be used.

What does this situation do to our class hierarchy? How can this
new entity (the clinic patient) be inserted into our “family tree?”
One answer involves creating an ancestor to the TCustomer class,
and including in the class only the things common to the TCustomer
and TClinicPatient classes (see Figure 3). TClinicPatient and
TCustomer, then, descend from TGeneralClass. However, there are
two main problems with this.

The first problem is that TClinicPatient is just one example of a
class that requires the attributes of the descendant (TInPatient),
but none or few of the attributes of the ancestor (TCustomer).
21 April 1999 Delphi Informant
Another example might involve a patient who has no insurance
and pays monthly installments toward his or her medical bills.
For each new entity that’s introduced into the system, the entire
hierarchy must be rearranged so that all the classes can share com-
mon ancestors. This can be done in two ways:

Use a language that supports multiple inheritance.
For each new entity, create an ancestor (TGeneralClass) to the
class with properties that need to be split up (TCustomerClass),
and “factor out” the common properties; then create the new
class (TClinicPatient) as a descendant of the ancestor
TGeneralClass.

Using either of these solutions, the hierarchy can become a tangled
web of countless generations of ancestors and descendants — an
endless maintenance nightmare.

The second problem is that the client application’s variable is cur-
rently defined as TCustomer. Under the new hierarchy, it can’t
hold a reference to a ClinicPatient object, because TClinicPatient
isn’t a descendant of TCustomer. But even if the variable’s type was
changed to TGeneralClass, there would still be a problem. For the

methods common to TInPatient and TClinicPatient to
behave polymorphically, they would have to be defined
in the TGeneralClass class. This doesn’t follow the rules
of encapsulation, and is generally a bad idea.

It’s important to note that it is the unpredictability of
systems that causes these types of problems. It’s possible
to create an elegant hierarchy that serves a system’s pri-
mary needs, but, as that system is maintained and busi-
ness grows or changes, additions to the system require
the reengineering of the entire hierarchy. As the hierar-
chy is twisted out of its original shape, it becomes more
and more difficult to maintain.

Interfaces to the Rescue
Now let’s consider the same example using interfaces.
We start by defining the IGeneralInfo, IAccountsPayable,
IInsuranceInfo, and IPatientInfo interfaces. Each repre-
sents a group of methods related to a specific set of

functionality. TCustomer is now a class that implements three
interfaces: IGeneralInfo, IAccountsPayable, and IInsuranceInfo. The
TInPatient class descends from TCustomer, and implements the
IPatientInfo interface (see Figure 4).

The difference between these two systems may seem small at first,
but we now have much greater flexibility. We can easily create a
class named TClinicPatient that implements the IGeneralInfo and
IPatientInfo interfaces. This frees us from the burden of finding
— or creating — an appropriate place in the hierarchy for our
new class. When the application needs to invoke a method related
to the current object’s InPatient information, it declares a variable
of type IPatientInfo. This variable can hold a reference to any
object that implements the IPatientInfo interface, regardless of its
ancestral history. It’s this element that allows the IPatientInfo
methods to be called polymorphically.

Conclusion
Interfaces give the developer a significant advantage in developing
flexible, efficient, and maintainable systems. They allow the client to
request a set of services from any server object that can provide
them. In addition, the server objects that provide those services
aren’t required to be related in any way.

ntInfo

On Language
The use of interfaces not only eliminates the need for client-side
variables to know the implementation details of the methods they’re
invoking, but also the ancestral history of the server object they’re
referencing. Interfaces also allow an object’s functionality to be split
into a set of “changeable parts,” which greatly simplifies the adapt-
ability of growing systems. ∆

The author would like to thank Ken Faw and Stephen Chirico for
their help in preparing this article.

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\APR\DI9904EW.

Eric Whipple is a Delphi trainer and mentor for Pillar Technology Group, Inc. of
Detroit, a full-service consulting, training, and mentoring firm specializing in pro-
ject management and in the analysis, design, and development of distributed,
enterprise systems (http://www.knowledgeable.com). Eric is a Delphi 4 certified
developer and trainer, and can be reached at ewhipple@kowledgeable.com or
(317) 915-9031.
Begin Listing One — TReports Class
unit ReportsServer1_IMPL;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

ComObj, StdVcl, CorbaObj, ReportsServer1_TLB, Dialogs;

type
TReports = class(TCorbaImplementation, IReports)
private

ReportList : TStringList;

public
constructor Create(Controller: IObject;

AFactory: TCorbaFactory); override;
destructor Destroy; override;

protected
function CloseReport(const ReportName: WideString):

WordBool; safecall;
function DoDaysEndReports: WordBool; safecall;
function GetReport(const ReportName: WideString):

WordBool; safecall;
function PrintReport(const ReportName: WideString):

WordBool; safecall;
function getReportCount: Integer; safecall;
function ReportIsOpened(const ReportName: WideString):

WordBool; safecall;
end;

implementation

uses
CorbInit, FormReportsServerMain;

constructor TReports.Create(Controller: IObject;

AFactory: TCorbaFactory);

begin
inherited Create(Controller,AFactory);

ReportList := TStringList.Create;

end;

destructor TReports.Destroy;

begin
ReportList.Free;
22 April 1999 Delphi Informant
inherited Destroy;

end;

{ The IReport method implementations. }
function TReports.CloseReport(

const ReportName: WideString): WordBool;

begin
with ReportList do

if ReportIsOpened(ReportName) then
begin

Delete(IndexOf(ReportName));

with frmReportsServerMain.lstbxCurrentReports do
Items.Delete(Items.IndexOf(ReportName));

Result := True;

end
else

Result := False;

end;

function TReports.DoDaysEndReports: WordBool;

begin
Result := True;

end;

function TReports.GetReport(const ReportName: WideString):

WordBool;

begin
if ReportList.IndexOf(ReportName) = -1 then

begin
ReportList.Add(ReportName);

frmReportsServerMain.lstbxCurrentReports.Items.Add(

ReportName);

Result := True;

frmReportsServerMain.stsbrStatus.SimpleText :=

'There are currently ' +

IntToStr(ReportList.Count) + ' opened.';

end
else

Result := False;

end;

function TReports.PrintReport(

const ReportName: WideString): WordBool;

begin
Result := ReportIsOpened(ReportName);

end;

function TReports.getReportCount: Integer;

begin
Result := ReportList.Count;

frmReportsServerMain.stsbrStatus.SimpleText :=

'There are currently ' + IntToStr(ReportList.Count) +

' opened.';

end;

function TReports.ReportIsOpened(

const ReportName: WideString): WordBool;

begin
Result := not(ReportList.IndexOf(ReportName) = -1);

end;

initialization
TCorbaObjectFactory.Create('ReportsFactory', 'Reports',

'IDL:ReportsServer1/ReportsFactory:1.0', IReports,

TReports, iMultiInstance, tmSingleThread);

end.

End Listing One
Begin Listing Two — ReportServer of Type TReports
unit FormReportClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

http://www.knowledgeable.com

On Language
Forms, Dialogs, StdCtrls, ExtCtrls, Buttons,

ReportsServer1_TLB;

type
TfrmReportClientMain = class(TForm)

Panel1: TPanel;

pnlOpenedReports: TPanel;

Label1: TLabel;

lstbxOpenedReports: TListBox;

rdgrpReportType: TRadioGroup;

btnOpenReport: TButton;

btnPrintReport: TButton;

btnCloseReport: TButton;

Panel2: TPanel;

BitBtn1: TBitBtn;

rdgrpReportScope: TRadioGroup;

btbtnDaysEnd: TBitBtn;

procedure btnOpenReportClick(Sender: TObject);

procedure btnCloseReportClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure btnPrintReportClick(Sender: TObject);

procedure btbtnDaysEndClick(Sender: TObject);

end;

var
frmReportClientMain: TfrmReportClientMain;

implementation

var
// This variable can only hold a reference to objects
// instantiated from the TReports class, or one of its
// descendants.
ReportsServer: TReports;

{$R *.DFM}

procedure TfrmReportClientMain.btnOpenReportClick(

Sender: TObject);

var
ReportName: string;

begin
ReportName := rdgrpReportScope.Items[

rdgrpReportScope.ItemIndex] + ' ' +

rdgrpReportType.Items[rdgrpReportType.ItemIndex];

{ Invoking a server method. }
if ReportsServer.GetReport(ReportName) then

begin
lstbxOpenedReports.Items.Add(ReportName);

btnCloseReport.Enabled := True;

end
else

MessageDlg('That report is already opened.',mtError,

[mbOK],0);

end;

procedure TfrmReportClientMain.btnCloseReportClick(

Sender: TObject);

begin
with lstbxOpenedReports do begin

if ItemIndex = -1 then
MessageDlg('No report is currently selected.',

mtError,[mbOK],0)

else begin
ReportsServer.CloseReport(Items[ItemIndex]);

Items.Delete(ItemIndex);

if ReportsServer.getReportCount = 0 then
btnCloseReport.Enabled := False;

end;
end;

end;

procedure TfrmReportClientMain.FormCreate(Sender: TObject);

begin
23 April 1999 Delphi Informant
ReportsServer :=

TReportsCorbaFactory.CreateInstance('Reports1');

end;

procedure TfrmReportClientMain.btnPrintReportClick(

Sender: TObject);

begin
if ReportsServer.PrintReport(lstbxOpenedReports.Items[

lstbxOpenedReports.ItemIndex]) then
ShowMessage('Printing...');

end;

procedure TfrmReportClientMain.btbtnDaysEndClick(

Sender: TObject);

begin
if ReportsServer.DoDaysEndReports then

MessageDlg('Days end reports complete.',

mtInformation,[mbOK],0);

end;

end.

End Listing Two
Begin Listing Three — ReportServer of Type IReports
unit FormReportClientMain;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls, ExtCtrls, Buttons,

ReportsServer1_TLB;

type
TfrmReportClientMain = class(TForm)

Panel1: TPanel;

pnlOpenedReports: TPanel;

Label1: TLabel;

lstbxOpenedReports: TListBox;

rdgrpReportType: TRadioGroup;

btnOpenReport: TButton;

btnPrintReport: TButton;

btnCloseReport: TButton;

Panel2: TPanel;

BitBtn1: TBitBtn;

rdgrpReportScope: TRadioGroup;

btbtnDaysEnd: TBitBtn;

procedure btnOpenReportClick(Sender: TObject);

procedure btnCloseReportClick(Sender: TObject);

procedure FormCreate(Sender: TObject);

procedure btnPrintReportClick(Sender: TObject);

procedure btbtnDaysEndClick(Sender: TObject);

end;

var
frmReportClientMain: TfrmReportClientMain;

implementation

uses
ReportsServer1_TLB;

var
// This variable can hold a reference to any object that
// implements the IReports interface.
ReportsServer: IReports;

{$R *.DFM}

procedure TfrmReportClientMain.btnOpenReportClick(

Sender: TObject);

var

On Language
ReportName: string;
begin
ReportName := rdgrpReportScope.Items[

rdgrpReportScope.ItemIndex] + ' ' +

rdgrpReportType.Items[rdgrpReportType.ItemIndex];

if ReportsServer.GetReport(ReportName) then
begin
lstbxOpenedReports.Items.Add(ReportName);

btnCloseReport.Enabled := True;

end
else

MessageDlg('That report is already opened.',

mtError,[mbOK],0);

end;

procedure TfrmReportClientMain.btnCloseReportClick(

Sender: TObject);

begin
with lstbxOpenedReports do begin
if ItemIndex = -1 then
MessageDlg('No report is currently selected.',

mtError,[mbOK],0)

else
begin
ReportsServer.CloseReport(Items[ItemIndex]);

Items.Delete(ItemIndex);

if ReportsServer.getReportCount = 0 then
btnCloseReport.Enabled := False;

end;
end;
24 April 1999 Delphi Informant
end;

procedure TfrmReportClientMain.FormCreate(Sender: TObject);

begin
ReportsServer :=

TReportsCorbaFactory.CreateInstance('Reports1');

end;

procedure TfrmReportClientMain.btnPrintReportClick(

Sender: TObject);

begin
if ReportsServer.PrintReport(lstbxOpenedReports.Items[

lstbxOpenedReports.ItemIndex]) then
ShowMessage('Printing...');

end;

procedure TfrmReportClientMain.btbtnDaysEndClick(

Sender: TObject);

begin
if ReportsServer.DoDaysEndReports then

MessageDlg('Days end reports complete.',

mtInformation,[mbOK],0);

end;

end.

End Listing Three

25 April 1999 Delphi Informant

Informant Spotlight

By Chris Austria
Tools for the New Millennium
The 1999 Delphi Informant Readers Choice Awards

The millennium is near! The world is ending!” the man on the street corner shouts at
you at the top of his lungs. You smile, walk past him, and head toward the build-

ing that contains your modest cubicle in the sky. “Not quite yet,” you think as you sit in
your chair, boot up your PC, and crack open the latest issue of Delphi Informant.

“

Indeed, the world is not ending; life is great, and busy
as ever. Just ask the hundreds of vendors that busted
their behinds during 1998 in an effort to provide
you, loyal Delphi users, the best third-party products
for your favorite development environment. To these
vendors, every year is about moving on to bigger and
better things, and this year is no exception.

129 products secured spots on the ballot for
this, the fourth annual Delphi Informant
Readers Choice Awards. While many of last
year’s 110 participating products remained,
some vanished, and were quietly replaced.
There were some changes in the ballot struc-
ture; while the Best ActiveX category was
removed, new categories, including Best
Accounting Package, Best Utility, and Best
Charting/Imaging (a combination of last year’s
separate Best Charting and Best Imaging cate-
gories), were introduced.
Best Accounting Package
Seeing how close the tally was for Best Accounting Package,
it’s easy to see why we wanted to add this category. Barely
passing AdaptAccounts by Adapta Software was Diversified
Business Applications’ Bravo, earning 30 percent to Adapta’s
29. Bravo, the company’s flagship product, is a complete
solution capable of running with a variety of back-end
databases, including Microsoft SQL Server, InterBase,
Oracle, and Sybase.

Talk about close. If you like AdaptAccounts and didn’t
vote this year, maybe you’ll think twice about skipping
it next year!

30% 29%

22%

14%

5%

B
ra

vo

A
da

pt
A

cc
ou

nt
s

A
cc

ou
nt

in
g

fo
r

D
el

ph
i

O
th

er

A
cc

ou
nt

in
g

So
ur

ce
 C

od
e

Best Add-in/Library
This category has been popular every year, and this year is
no exception. This year’s winner is also no surprise;
SysTools from TurboPower wins for the third year in a row.
We have our first “three-peat” winner, garnering 39 per-
cent. Coming in second — no easy achievement — is
CodeRush from Eagle Software, rounding up 17 percent of
the votes. This product wasn’t on the ballot last year, and
was able to debut near the top. If it keeps up this pace, who
knows where it will be next year?

Sy
sT

oo
ls

Co
de

Ru
sh

M
ul

ti-
Ed

it

O
th

er

B
ou

nd
sC

he
ck

er

39%

17%
14%

22%

8%

Informant Spotlight
Best Delphi Book
Important to every developer’s collection are the books that help them get the
most from their software, and this year’s bunch offers many great titles. However,
only two can be considered best sellers in our readers’ eyes: Delphi 4 Developer’s
Guide [SAMS, 1998] by Steve Teixeira and Xavier Pacheco, and Mastering Delphi
4 [SYBEX, 1998] by Marco Cantù. Delphi 4 Developer’s Guide collected a hefty
33 percent of the votes, and Mastering Delphi 4 amassed 21 percent.

D
el

ph
i 4

 D
ev

el
op

er
’s

 G
ui

de

M
as

te
ri

ng
 D

el
ph

i 4

Th
e

To
m

es
 o

f
D

el
ph

i 3
:

W
in

32
 C

or
e

A
P

I

D
el

ph
i D

ev
el

op
er

’s
 H

an
db

oo
k

O
th

er

33%

21%

10% 10%

26%
Best Charting/Imaging Tool
These numbers should be a cinch to show in a chart — using any of the great tools
in this category, of course. This category brings another repeat winner: teeChart
Pro from teeMach, which compiled 41 percent of the total votes in this category,
compared to last year’s whopping 50 percent. Obviously, most of you already know
of teeChart’s use in general purpose and specialized chart and graphing applications
in engineering, finance, statistics, science, medicine, the Web, and business.

ImageLib from Skyline Tools made another great showing this year with 36 per-
centage points, compared to last year’s 37. Skyline has never been one to ease up,
and, chances are, they’ll keep the competition on their toes this coming year.

te
eC

ha
rt

 P
ro

Im
ag

eL
ib

Im
ag

Xp
re

ss

M
ap

O
bj

ec
ts

 L
T

O
th

er

41%

36%

16%

4%
3%
Best Connectivity Tool
This category’s significance constantly grows as the world becomes more con-
nected. The task of implementing connectivity functionality — at least for many
Delphi users — lies in the hands of this year’s winner: TurboPower Software’s
Async Professional, with a total of 68 percentage points! Hats off to TurboPower.
Not only has the company dominated two categories so far, its products are
three-peat performers in both of them.

Worthy of mention is the runner-up, WebHub from HREF Tools, which slipped
to 10 percent of the votes (compared to last year’s 21), but I’m sure they’re not
slowing down a bit.

A
sy

nc
 P

ro
fe

ss
io

na
l

W
eb

H
ub

IP
*W

or
ks

!
D

el
ph

i E
di

tio
n

Vi
su

al
 V

oi
ce

 4
.0

O
th

er

68%

10%
5% 4%

13%
Best Database Tool
Another staple category, Best Database Tool is the second largest category on the
ballot. With so many potential winners, this year’s first-place bragging rights go
to Strategic Edge’s Query Maker for Delphi, a redistributable SQL query builder
and report writer component. This new product accumulated an incredible 44
percentage points. Pretty good for its first time in our winner’s circle!

Slipping a notch to second place is last year’s winner, InfoPower from Woll2Woll
Software. InfoPower amassed only 8 percent this year, but, knowing Woll2Woll,
they’ll be back to try and take back what was once theirs.

Q
ue

ry
 M

ak
er

 f
or

 D
el

ph
i

In
fo

Po
w

er

Co
de

B
as

e

O
D

B
CE

xp
re

ss

O
th

er
44%

36%

8% 7%
5%
Best Help Authoring Package
This category brings another underdog-turned-champion. Collecting a meager 7
percentage points last year, HelpScribble from Jan Goyvaerts gathered 27 percent
of this year’s votes — enough to edge out last year’s winner, RoboHELP from
Blue Sky Software, which garnered an uncomfortably close 26 percentage points.
Apparently, HelpScribble needed no help, as its ability to parse source and gener-
ate an outline help file was enough to get you to vote in its favor.

H
el

pS
cr

ib
bl

e

Ro
bo

H
EL

P

Fo
re

H
el

p

O
th

er

Ti
m

e2
H

EL
P

27% 26%

23%
21%

3%
26 April 1999 Delphi Informant

Informant Spotlight
Best Installation Package
There are only a few major players in this category, which makes the fight to the
top that much more intense. Last year, InstallShield Express from InstallShield
Software beat out Wise Installation System from Wise Solutions by only one per-
centile. With 51 percent of the votes, InstallShield gained some breathing room
over Wise this year — 16 percent worth. Although InstallShield has managed
three times to keep Wise out of pole position, it’s always back and forth for these
two competitors, so don’t blink or you’ll miss the next move.

In
ta

llS
hi

el
d

Ex
pr

es
s

W
is

e
In

st
al

la
tio

n
Sy

st
em

Yo
us

ef
ul

P
C-

In
st

al
l

O
th

er

51%

35%

7%
2%

5%
Best Reporting Tool
It’s always a pleasure to report (wink, wink) the results of this category. The win-
ner in the two previous years, ReportPrinter Pro from Nevrona Designs, was
hoping for a third first-place award this year. Alas, they must settle for a very
respectable second, collecting 28 percent of the votes, as ReportBuilder from
Digital Metaphors took first place with 38 percent of the votes. ReportBuilder
4.0 offers a new report wizard, drag-and-drop productivity tools, enhanced calcu-
lation components, mail/merge, and “keep together” support, to name a few.

Re
po

rt
B

ui
ld

er

Re
po

rt
Pr

in
te

r
P

ro

Sh
az

am
 R

ep
or

t
W

iz
ar

d

A
CE

 R
ep

or
te

r

O
th

er

38%

28%

12%
9%

13%
Best Training
Let this year’s winner pass their knowledge on to you, and you may learn how to
be a winner — two times in a row. In a repeat performance, InfoCan
Management took first place this year by gathering 19 percent of the votes. The
runner-up, Database Programmers Retreat, went from 5 percent to 14 percent,
narrowing the gap from behind. Softbite International came in third with 12
percent of the votes. With the margins among the top three finishers so close,
who knows what next year will bring?

In
fo

Ca
n

M
an

ag
em

en
t

D
at

ab
as

e
P

ro
gr

am
m

er
s

Re
tr

ea
t

So
ft

bi
te

 I
nt

er
na

tio
na

l

Th
e

D
SW

 G
ro

up

O
th

er

19%

45%

14%
12%

10%
Best VCL
This is the largest category on the ballot, consisting of 23 possible choices (not
including “other”) — almost twice the number of last year. This becomes more sig-
nificant when you see that with all these great products to choose from, last year’s
winner held its spot at the top. Yes, TurboPower’s Orpheus retained its title as Best
VCL, garnering 32 percent of the votes for this category, a few points higher than
they had last year.

Second place honors go to Raize Software Solutions’ Raize Components, which
last year came in fourth — proof again that the competition is never too far
behind, and one year can mean losing or gaining a lot of ground.

O
rp

he
us

Ra
iz

e
Co

m
po

ne
nt

s

To
pG

ri
d

LM
D

-T
oo

ls

32%

20%

39%

5% 4%

O
th

er
Best Utility
This is another new category, but it already has a fairly large number of products
to offer. The first to reach the top in this category is Memory Sleuth from —
surprise, surprise — TurboPower Software, claiming 38 percent of your votes.
Memory Sleuth is not something you easily forget, with its ability to help you
track down dozens of memory leaks and resource bugs in your Delphi programs.

The folks at TurboPower simply don’t leave anything to chance. That’s because
they know someone’s always on their heels. In this case, it’s CodeSite from Raize
Software Solutions, which compiled a respectable 24 percent.

M
em

or
y

Sl
eu

th

Co
de

Si
te

D
em

oS
hi

el
d

Sh
ri

nk
er

O
th

er

38%

24%

17%

12%

9%
27 April 1999 Delphi Informant

Informant Spotlight
Product of the Year
As always, this category instills the most excitement, because
the winner claims the highest honors — the single-most cov-
eted award. This year brings an upset, as first place is taken
away from three-time Product of the Year winner InfoPower
from Woll2Woll. This year, ReportBuilder from Digital
Metaphors is the most popular Delphi product on the mar-
ket, accumulating 13 percent of the votes.

To put the scope of the competition into better perspective,
the second place winner, Orpheus from TurboPower, gar-
nered a very close 11 percent of the votes, third place
received 9 percent, and fourth place received 8. You can’t get
much closer than that. The gaps are getting narrower, mak-
ing it that much more exciting to see who will come out on
top next year.

Re
po

rt
B

ui
ld

er

O
rp

he
us

M
ul

ti-
Ed

it

Ro
bo

H
EL

P

Fl
as

hF
ile

r

In
fo

Po
w

er

To
pa

z

R
XL

ib

O
th

er

Sy
sT

oo
ls

Re
po

rt
Pr

in
te

r
Pr

o

13%

11%

9%
8%

6% 5% 5%
4% 3% 3%

33%
See You Next Year
This makes two Readers Choice Awards under my belt. I must say
it’s a challenging and exciting undertaking. It’s an honor to not only
witness the competition first-hand, but to present you, our readers,
with the results. I thank everyone for their participation and contri-
bution to this year’s awards. Behind the printed results on these
pages are vendors with the desire to stand tall, undaunted by the
competition. Nothing short of perseverance, commitment, creativity,
28 April 1999 Delphi Informant

Contacting t
and good old-fashioned hard work enabled this year’s winners to
come out on top. Let’s keep the passion alive until next year, or until
the world ends — whichever comes first. ∆

Chris Austria is Products Editor at Delphi Informant, and can be reached via
e-mail at caustria@informant.com.
he Winners

Best Accounting Package
Bravo
Diversified Business Applications, Inc.
Phone: (510) 658-8535
Web Site: http://www.bravosoft.com

Best Add-in/Library
SysTools
TurboPower Software
Phone: (800) 333-4160 or (719) 260-9136
Web Site: http://www.turbopower.com

Best Delphi Book
Delphi 4 Developer’s Guide
By Steve Teixeira and Xavier Pacheco
SAMS
Phone: (317) 228-4336
Web Site: http://www.mcp.com/
publishers/sams

Best Charting/Imaging Tool
teeChart Pro
teeMach, SL
Phone: 34 972 59 71 61
Web Site: http://www.teemach.com
Best Connectivity Tool
Async Professional
TurboPower Software
Phone: (800) 333-4160 or (719) 260-9136
Web Site: http://www.turbopower.com

Best Database Tool
Query Maker for Delphi
Strategic Edge
Phone: (415) 563-3755
Web Site: http://www.strategicedge.com

Best Help Authoring Package
HelpScribble
Jan Goyvaerts (JGsoft)
E-Mail: jg@jgsoft.com
Web Site: http://www.jgsoft.com

Best Installation Package
InstallShield Express
InstallShield Software Corp.
Phone: (800) 374-4353 or (847) 240-9111
Web Site: http://www.installshield.com

Best Reporting Tool
ReportBuilder
Digital Metaphors
Phone: (972) 931-1941
Web Site: http://www.digital-metaphors.com
Best Training
InfoCan Management
Phone: (888) INFOCAN or (604) 736-5888
Web Site: http://www.infocan.com

Best VCL
Orpheus
TurboPower Software
Phone: (800) 333-4160 or (719) 260-9136
Web Site: http://www.turbopower.com

Best Utility
Memory Sleuth
TurboPower Software
Phone: (800) 333-4160 or (719) 260-9136
Web Site: http://www.turbopower.com

Product of the Year
ReportBuilder
Digital Metaphors
Phone: (972) 931-1941
Web Site: http://www.digital-metaphors.com

http://www.bravosoft.com
http://www.turbopower.com
http://www.mcp.com/publishers/sams
http://www.mcp.com/publishers/sams
http://www.teemach.com
http://www.turbopower.com
http://www.strategicedge.com
http://www.jgsoft.com
http://www.installshield.com
http://www.digital-metaphors.com
http://www.infocan.com
http://www.turbopower.com
http://www.turbopower.com
http://www.digital-metaphors.com

29 April 1999 Delphi Informant

OP Tech
OOP / VCL / Properties

By Philip Brown

type
TAncestorC

protected
procedur

end;

TDescendan

protected
procedur
procedur

end;

procedure TD

begin
inherited;
// New fun

end;

Figure 1: An
Property Overriding
Extend the Functionality of Any VCL Class

T he Visual Component Library (VCL) supplied with Delphi allows developers to extend
the behavior of the existing controls by creating an inherited class, adding their

own methods, properties, and events, and overriding methods that the VCL designers
have supplied as virtual.
l

e

t

e
e

e

c

e

Sometimes, however, this is not enough. The VCL
doesn’t expose all methods in the protected section
(by defining them as private), making them unavail-
able to descendant classes. Many key routines are
defined statically, ruling out the possibility of over-
riding them and adding new functionality.

Fortunately, it’s possible to extend the standard
functionality of any class (including compo-
nents) using the built-in capabilities of Delphi.
One technique, buried deep within the Delphi
documentation, is property overriding. This tech-
nique allows a class to redefine the behavior of a
property, while still accessing the existing opera-
tions — even if the accessor functions used to
control the property are private, and, therefore,
typically unavailable.
ass = class

VirtualMethod; virtual;

Class = class(TAncestorClass)

VirtualMethod; override;
StaticMethod;

scendantClass.VirtualMethod;

tionality added here.

xample of using the inherited call.
Property overriding is a standard, “pure” technique,
i.e. it doesn’t break any of the rules of object-orien-
tation or scope. Using a variation of property over-
riding, it’s even possible to treat statically defined
methods as virtual, providing new behavior in
identically named methods in descendant classes,
while retaining access to the original properties.

It should be remembered that a static method
defined in a class can be used by descendants (as
long as it’s not declared in the private section),
whereas a dynamic method can be overridden in
descendant classes by declaring a method with the
same name and parameter list, followed by the
dynamic or virtual keyword. These overridden
methods can, and nearly always do, call the func-
tionality defined in the same method in ancestor
classes through the inherited call (see Figure 1).

It’s well known that the inherited keyword has an
optional parameter as the name of the method.
When defined, it’s normally used to pass parame-
ters to the same-named ancestor method (typically
used in constructors). In fact, in this context, it’s
entirely unnecessary — the inherited keyword on
its own means “call my ancestor method with the
parameter list that was passed to me.”

What’s generally less known is that it’s perfectly
allowable to substitute a different method name as
the parameter to the inherited call. This allows a
descendant to call an ancestor method of a different
name. A particular twist to this situation (which we
will use to our advantage later) is bypassing func-
tionality. Let’s say the TDescendantClass.StaticMethod

OP Tech

interface

type
TXEdit = class(TEdit)
private

FReadOnly: Boolean;

FDesignColor: TColor;

procedure SetReadOnly(Value: Boolean);

procedure SetColor;

protected;
procedure Loaded; override;

published
property ReadOnly: Boolean

read FReadOnly write SetReadOnly default False;

end;

implementation

procedure TXEdit.Loaded;

begin
inherited;
FDesignColor := Color;

SetColor;

end;

procedure TXEdit.SetColor;

begin
if ReadOnly then

Color := clBtnFace;

else
Color := FDesignColor;

end;

procedure TXEdit.SetReadOnly(Value: Boolean);

begin
// Enabled/disable label that's linked to us. We can do
// this by looking at our owner's Controls property for a
// TLabel which has a FocusControl property linked to us.
for ThisCtrl := 0 to Parent.ControlCount - 1 do

if (Parent.Controls[ThisCtrl] is TLabel) and
(TLabel(Parent.Controls[

ThisCtrl]).FocusControl = Self) then
Parent.Controls[ThisCtrl].Enabled := not Value;

FReadOnly := Value;

inherited ReadOnly := Value;

// Change control background color.
SetColor;

end;

Figure 2: The TXEdit class provides our new functionality.
wants to call TAncestorClass.VirtualMethod, but doesn’t want to invoke
the functionality defined in its own VirtualMethod. This can be
achieved using the following code:

procedure TDescendantClass.StaticMethod;

begin
inherited VirtualMethod;

end;

This illustrates calling a different inherited method, and also causes the
VirtualMethod functionality defined in TDescendantClass to be bypassed.

Changing the Behavior of a VCL Property
Let’s say we want to extend the behavior of the TEdit VCL control
— in particular, the behavior of the ReadOnly property. It would
be nice if a TEdit control had a different background color when it
was ReadOnly, and if it would disable its associated TLabel. This
behavior would mimic that of Windows 95 and NT 4.0, and pro-
vide greater visual feedback to the user. Of course, we would also
want to retain TEdit’s existing functionality. Looking at the VCL
source code, this is the declaration for the ReadOnly property:

property ReadOnly: Boolean

read FReadOnly write SetReadOnly default False;

Unfortunately, the SetReadOnly method is declared in the private sec-
tion. Therefore, if we try to declare our own ReadOnly property with a
new accessor function, there’s no way we can call the SetReadOnly
method defined in TEdit to retain existing functionality. What many
people would do at this stage would be to provide a new property —
called Editable, for example — that implements our own functionality
but sets the ReadOnly property. This is unsatisfactory, as there are now
two methods that perform similar functions.

If developers wanted to keep the same property name for the new
method, they would be forced to implement their own ReadOnly
properties with their new functionality and also mimic the behavior
of the old ReadOnly property. This seems simple (to absorb any key
presses); however, to provide a proper implementation, we must
allow Clipboard copy operations (CC) and other special
Windows key presses, e.g. T. Whichever way this is implemented
(by copying the VCL source or coded from scratch), this approach is
undesirable. What an abuse of object-oriented principles: copying
code in an ancestor method simply because we have the source!

Of course, some of the blame for this lies with the Delphi developers that
defined too many VCL methods as private. They’ve absolved themselves,
of course, by providing mechanisms to work around this. They’re not
well documented, however. In fact, I stumbled across the technique sim-
ply by trying it out as a logical extension of the compiler’s capabilities.

To extend the behavior of the ReadOnly property, we’ll define our own
ReadOnly property with our own SetReadOnly accessor function, then
set the ReadOnly property defined in our ancestor (which will use our
ancestor’s ReadOnly property). Hang on a minute, what was that?
Well, the inherited keyword allows us not only to call methods, but
also to set properties. For example, the statement:

inherited ReadOnly := True;

allows us to set the ReadOnly property at the notional level of our
ancestor, thereby calling whatever accessor functions were defined
30 April 1999 Delphi Informant
for the property at that level (even if they are private to our ances-
tor). Therefore, if we provide our own functionality to support our
ReadOnly behavior, this mechanism lets us tap into that which the
VCL provides — virtually for free.

The complete implementation of a new TEdit class (called TXEdit),
which provides our new functionality, is shown in Figure 2. This tech-
nique — of using the inherited keyword to direct behavior to our ances-
tor — can be extremely useful in implementing new classes effectively,
especially when used to set properties at the notional ancestor level.

Note that the Loaded virtual method is overridden so that after
the component properties have been read in from the stream at
run time, the original background color set at design time is
remembered. Also, we need to override the Create constructor to
set an initial value for this same original background color.

The behavior at design time is still a little less than ideal. For
example, if we drop a TXEdit on a form, set its color to clYellow,
and then toggle its ReadOnly property from False to True and

OP Tech

type
TXListItem = class(TListItem)
private

function GetID: string;
procedure SetID(Value: string);

published
property Identifier: string read GetID write SetID;

end;

TXListItems = class(TXListItems)
private

function GetItem(Index: Integer): TXListItem;

public
procedure Clear;

published
property Item[Index: Integer]: TXListItem

read GetItem; default;
end;

TXListView = class(TListView)
private

function GetItems: TXListItems;

published
property Items: TXListItems read GetItems;

end;

Figure 3: Defining our new classes.
then back to False, the control color is set back to clWindow.
This is simply because we are remembering the control’s original
color when it was created, not whenever it is changed. You could,
of course, apply the same technique to the control’s Color proper-
ty. That way, when we change the control’s Color property, we
could save this color as its non-ReadOnly color. The behavior at
run time, however, is fine and doesn’t exhibit this behavior
because at design time we defined what its default color will be.

Extending Further: Changing Related Classes
There is one area of the VCL, however, where even these techniques
don’t allow us any latitude: related classes. Let’s take as an example
the TListView component, which is an excellent way of presenting a
number of objects. The TListView class has a property, Items, which
returns a TListItems object, which manipulates a set of TListItem
objects — one for each element in the list view.

Because the TListView itself creates these classes, we can’t change
what class types are instantiated (and so cannot provide our own
descendants of TListItems and TListItem). We can, of course, sub-
class the TListView class to produce our own TXListView, but we
can’t fundamentally change the fact that we will be dealing with
TListItems and TListItem classes. (This isn’t strictly true. We could
completely hide the Items property, construct our own TXListItems
class, and return this. However, there would be a lot of work and
duplication of code involved, so it’s not an elegant solution.)

TListView components are often used to allow the user to pick an
element and manipulate it. In these cases, it’s useful to attach an
instance to the Data property of each TListItem, so the object
represented by the list element is readily accessible. However,
there’s a snag to this approach. The standard way of clearing the
list is to call TListView.Items.Clear (i.e. a method on TListItems),
and, even if we have our own TListView descendant, we cannot
be informed when this method is called. Therefore, if we attach
instances to each TListItem, then call TListView.Items.Clear, those
instances will not be freed; they will be left as “orphans,” con-
suming system resources until the application exits. It’s possible
to tap into the OnDeletion event of the list view (which occurs
whenever an item is deleted), but it’s good class design to handle
internal housekeeping invisibly, without requiring the user to
remember to add event handlers for standard behavior. Of
course, if we were to attach a routine to the event handler in
code, then any event handler the user defined would eliminate
the one we attached earlier.

It would be better if there were some way in which you could provide
your own classes for related classes to VCL components, so we could
override the Clear method of TListItems, for example, so we could han-
dle the previous situation. Unfortunately, this isn’t possible. However,
using our property and method overrides, some intuition, and a little
class-safe typecasting, it’s possible to achieve the same effect.

We’re going to provide three new classes — TXListView,
TXListItems, and TXListItem — that allow us to extend their similar-
ly named VCL counterparts. Behind the scenes, TListView will still
be responsible for constructing the related objects (i.e. TListItems
and TListItem), but we will “confuse” TXListView into thinking it’s
dealing with our own classes.

Figure 3 shows a few definitions to get us started. You can see from
these definitions that our TXListView returns TXListItems, which are
sets of TXListItem objects. In addition, we’ve given ourselves access
31 April 1999 Delphi Informant
to the Clear method of TXListItems, and we’ve added a new property
to TXListItem, named Identifier. So how does it all hang together?

It starts with TXListView, which simply has this as its implementa-
tion of GetItems:

function TXListView.GetItems: TXListItems;

begin
Result := TXListItems(inherited Items);

end;

Here, we’re using our magical inherited property to return the Items
property defined in our ancestor (the standard VCL TListView), but
typecast as TXListItems. Note that we’re still relying on our ancestor to
handle the construction and destruction of the class; we just change the
type that’s returned. We do something similar for TXListItems.GetItem:

function TXListItems.GetItem (Index: Integer): TXListItem;

begin
Result := TXListItem(inherited Item[Index]);

end;

We can now provide our own functionality in the TXListItems.Clear
method:

procedure TXListItems.Clear;

begin
// Use existing functionality.
inherited Clear;

// Our own functionality can be provided here.
ShowMessage('List cleared!');

end;

Again, we’re calling our ancestor’s Clear method using the inherited
keyword. If we only called Clear, we would initiate infinite recursion,
causing stack overflow. The Clear method is static, not dynamic, but
we’re still able to reference it in a descendant and call it via inherited.

If we now drop a TXListView onto a form, it presents its Items proper-
ty as TXListItems, and will, therefore, reference our TXListItems class

OP Tech
properties and methods. There is an important restriction in what we
can and cannot do here; although we’re typecasting the Items property
to be a TXListItems object, it will still be constructed as a genuine stan-
dard VCL TListItems. We cannot lose sight of that, even if we treat it
as TXListItems. In practice, this means we cannot add data elements to
the class as public or private fields, or any dynamic methods. We can’t
do this because it would change the memory footprint of the class,
confusing the compiler to the extent that it would reference memory
incorrectly. The program has been compiled to expect a TXListItems
class, but because this class is only constructed as a TListItems, memo-
ry addresses (of the field variables and Virtual Method Table) at run
time will be for this class and not what the compiler expected. If these
two vary, unpredictable (and usually terminal) side effects will result.

This is not, in practice, the straightjacket it seems to be. Genuinely
useful functionality can be added simply by providing your own stat-
ic methods (which can, of course, call ancestor static or dynamic
methods), especially for these related classes, where typically all we
want to do is provide an extra method or two and know when cer-
tain other public methods have been called.

You may have noticed the Identifier property on the TXListItem class.
I’ve just said you can’t add private fields, so why have I defined a new
property on my phantom class? It’s because you can make use of a
particular property of TListItem, and store your own data in it. The
TListItem represents an element presented in the TListView. If the list
view’s ViewStyle property is set to vsReport, it can have a number of
columns. The first column is represented by the Caption property of
TListItem, but all the subsequent columns are stored in the SubItems
property, a standard TStrings class (a direct descendant of TStringList).
Typically, a TListItem instance will have as many elements in its
SubItems list as there are columns in the list view, less one (for the
first column stored in the Caption).

There is no restriction on how many elements a TStringList can store,
however, so we can store our own data in extra elements. This is what
the GetID and SetID accessor functions do in TXListItem; they main-
tain the Identifier property in an extra element in the SubItems proper-
ty. This is never displayed on screen, as there is no corresponding col-
umn in the list view. The GetID and SetID routines are slightly com-
plicated because they must ensure the SubItems list is maintained cor-
rectly, but the basic technique is simple. (The routines are too long to
be shown, but the full source code for the five classes introduced here
can be downloaded; see below for details.)

Conclusion
We’ve explored some of the powerful ways in which classes can interact
using variations on the inherited keyword. Using it creatively has allowed
us to elegantly solve some of the issues of extending components, and
has opened areas of the VCL which have previously been inaccessible.
Judicious use of the techniques presented here should allow you to extend
existing components in new and exciting ways with minimum effort.
And that’s what object-oriented programming is all about. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\APR\DI9904PB.

Philip Brown is a Senior Consultant with Informatica Consultancy & Development
based in Surrey, UK. An OO advocate, he has been developing with Delphi since
its release, and specializes in advising clients on the best way to leverage objects
in a business environment. He can be contacted at phil@informatica.uk.com.
32 April 1999 Delphi Informant

TextFile

Charlie Calvert’s Delphi 4 Unleashed

I’m a huge Charlie Calvert fan. If you’ve
ever attended one of his presentations at a
conference (such as ICON, the Inprise
Conference), or one of the many appear-
ances he makes at user groups world-wide,
you already know why. Charlie is one of the
most entertaining speakers around. On top
of that, he knows his stuff. One of the more
amazing things about Charlie’s presentations
is that he makes any topic approachable, if
not simple. Making a topic seem simple
takes a great deal of time and effort. Charlie
spends the time and makes the effort, and
his audiences benefit.

Which brings me to Charlie Calvert’s
Delphi 4 Unleashed. Charlie writes just as
he speaks, i.e. he provides a lot of detail in
an easy-to-digest package, liberally sprin-
kled with personal comments and insights.
His writing style is casual, and he makes
frequent use of the first person singular.
Some readers may find this distracting, but
for the most part, it works well. In fact,
Charlie makes good use of this style to
share his philosophy on programming (and
just about anything else that occurs to
him). For example, Charlie writes, “I
believe that programming is among the
most fascinating of all human endeavors. I
think we are all wonderfully privileged to
be alive at a time when it is possible to
pursue this discipline.” But not all of these
side comments are so weighty. Some are
simply delightful, such as, “There are vari-
ous forms of madness in this world, but
undoubtedly one of the most egregious is
to call an OLE function and not check its
return value.” You get the idea.

Unleashed is extremely readable, but more
importantly, it has excellent content. The
section on creating components, while
merely an overview, emphasizes a general
philosophy about component design that
should be required reading for every com-
33 April 1999 Delphi Informant
ponent developer. On the other hand, the
section on the component object model
(COM) is extensive, providing the reader
with detailed discussions of interfaces,
COM, and OLE automation.

If you want to get started with CORBA,
you would be hard pressed to find a better
book. The chapter on CORBA alone is
worth the cover price, and is a perfect
example of the clarity and simplicity that
Charlie’s hard work produces. Unleashed
also has sections on Web development,
including an excellent chapter written by
Bob Swart on creating Web server exten-
sions. An entire section on graphics pro-
gramming includes extensive coverage of
DirectX technologies (DirectDraw,
DirectSound, etc.). In short, although
Unleashed doesn’t cover all aspects of
Delphi 4, it does cover many of the more
interesting topics very well.

Should you buy this book if you’ve purchased
an earlier edition of Charlie’s Unleashed series?
The answer is an unqualified “Yes!” Although
Charlie’s previous editions (Delphi Unleashed
and Delphi 2 Unleashed) were excellent
books, Charlie manages to pack a tremen-
dous amount of new material in each edition,
repeating a surprisingly small amount of
information. I estimate that less than a
fourth of this book is re-worked material.
This is an amazing feat for an author —
especially one with a day job.

I love this book, but I do have a couple of
complaints. First, the production is down-
right sloppy; there are a surprising num-
ber of grammatical and typographical
errors throughout the book that were
obviously introduced during production.
I hope SAMS reviews why this happened.
Second, five of the book’s chapters were
not printed. Instead, they appear on the
accompanying CD-ROM. I suspect it has
to do with the book’s length. At 1,152
pages, it’s a big book; including these
chapters would have increased the book’s
size to more than 1,300 pages.

Nonetheless, this is an excellent book that
I fully recommend. Most readers will
delight in Charlie’s clever observations and
natural intellect, and everyone will enjoy
the technical detail. Charlie works hard
and makes his topics seem effortless, and
the result is a book worthy of your shelf
space. Delphi 4 Unleashed has something
for everyone, and is a book that every
Delphi developer should consider adding
to their collection.

— Cary Jensen, Ph.D.

Charlie Calvert’s Delphi 4 Unleashed by
Charlie Calvert, with contributions by Bob
“Dr. Bob” Swart and Jeff Cottingham,
SAMS Publishing, http://www.
samspublishing.com.
ISBN: 0-672-31285-9
Price: US$49.99
(1,152 pages, CD-ROM)

http://www.samspublishing.com
http://www.samspublishing.com

TextFile
Of all the Delphi books available, only a
handful have achieved special status. When
a new version of Delphi is released, develop-
ers immediately go to their book stores to
find the one book explaining the best way to
use it. Mastering Delphi 4 is clearly among
that handful of books that sets the standard.
This latest edition of Mastering continues
the tradition established by its previous
three versions. The third edition was winner
of a Delphi Informant Readers Choice Award
for 1998 (the fourth edition is runner-up in
this year’s awards; see page 26).

Mastering has five sections: “Delphi and
Object Pascal,” “Using Components,”
“Writing Database Applications,”
“Components and Libraries,” and “Real
World Delphi Programming.” The book
starts with a thorough look at Delphi 4’s
primary enhancements, including its
redesigned IDE and its extensions to
Object Pascal. Chapter 2 includes excellent
coverage of the new dynamic arrays, as
well as one of the better discussions I’ve
seen on Delphi’s implementation of long
strings and reference counting.

Throughout the book author Marco Cantù
highlights the many new features found in
Delphi 4, and does a remarkably good job
of it. Naturally, with the addition of so
many new features to Delphi over the years,
some material must, by necessity, be cov-
ered rather briefly. One section I had hoped
would have gotten a bit more attention was
Delphi 4’s new docking facilities, but the
excellent coverage of other new features
more than made up for it in my opinion.

Mastering Delphi 4
34 April 1999 Delphi Informant
As in previous editions, Marco provides
strong coverage of database topics, as well
as graphics and user-interface program-
ming issues. The book is filled with excel-
lent code examples illustrating many new
and powerful techniques. The vast majori-
ty of these were small and elegant pieces of
code. I have always said: “If it takes more
than a few lines of code to do it, you’re
probably doing it wrong.” Marco clearly
applies this same thinking in his examples.

Out of curiosity, I dug up my original
1995 copy of Mastering Delphi (for Delphi
1) for comparison. Although both are of
titanic physical proportions, I found little
common material between them. Marco
has gone to considerable effort to keep the
material fresh and current. Subsequent edi-
tions of books typically contain few
changes, but this is not the case with
Mastering Delphi 4.

Another thing I enjoy about Marco’s
Mastering books is that they’re not just
technical reference books. I find them
excellent simply for reading. And —
believe me — that doesn’t apply to many
computer books! Marco has an excellent
writing style; at times you feel he’s stand-
ing over your shoulder saying “You’re
going to like this part ...” or “I bet you
didn’t know that ...” It’s a personal, friend-
ly style of writing that doesn’t get bogged
down in acronyms and tech-speak, yet gets
to the meat of issues clearly and concisely.

There is definitely something here for
everyone; Mastering Delphi 4 is suitable
for beginning Delphi programmers as well
as experts. If you’re a Delphi beginner and
want to learn what it can do, this book is
for you. If you’re an expert and want to
dig into some of the deeper aspects of
Delphi, there is plenty here for you as
well. Overall, it achieves a satisfying bal-
ance between the two. I highly recom-
mend it.

— Robert Vivrette

Mastering Delphi 4 by Marco Cantù, SYBEX,
1151 Marina Village Parkway, Alameda, CA
94501, http://www.sybex.com.

ISBN: 0-7821-2350-3
Price: US$49.99 (1,247 pages)
There’s no CD-ROM. The code samples in
the book can be obtained by visiting the
SYBEX Web site.

http://www.sybex.com

File | New
Directions / Commentary
Web Resources for Delphi Developers

In two previous columns, I discussed vendor-related Delphi sites and publisher sites. This month, I’ll present two sites
that provide information about file formats, two sites devoted to user interfaces, and five excellent Pascal sites.
Learning about file formats. Occasionally, I
see questions posted to newsgroups or list
servers about file formats. I recently learned
about two sites that provide a wealth of
information on this topic. The first, Wotsit’s
Format (http://www.wotsit.org) is a massive
and well-organized site containing informa-
tion about hundreds of file types. Its cate-
gories include graphics, movies and anima-
tion, spreadsheets, databases, fonts, games,
word processing, and others. The site also
includes additional programming informa-
tion, such as algorithms and source code. It
includes an excellent search engine, allowing
you to easily find the information you need.
It even includes an online chat forum where
you can discuss programming issues.

Achim’s File-Format Library
(http://www.geocities.com/siliconvalley/
horizon/3433/ff_.htm) is another site dedi-
cated to this topic. Rather than including
information on the site itself, it provides a
wealth of links to other sites; there are over
900 links providing information on more
than 600 file formats. Its main categories
are 2D and 3D graphics, animation,
sound, text, archives, database, program-
ming, and miscellaneous. The miscella-
neous category includes everything from
game file formats to flowcharting applica-
tion formats. As you can guess, there are
many links to the Wotsit site, but there are
links to many others as well.

Best and worst user interfaces. The
Interface Hall of Shame (http://www.
iarchitect.com/mshame.htm) is a unique
site that should appeal to any developer
writing Windows applications, regardless
of language. Maintained by Isys
Information Architects Inc., this site pro-
vides a wonderful collection of common
UI design mistakes, e.g. faulty design of
visual elements, improper use of error
35 April 1999 Delphi Informant
messages, etc. There is much wisdom in
this quote from one of the examples:
“Error messages are the antithesis of prop-
er application design.” You’ll be surprised
at some of the well-known applications
from which the examples are taken. For
examples of how to “do it right,” take a
look at its companion site, the Interface
Hall of Fame at http://www.iarchitect.
com/mfame.htm.

Pascal the language. As you know, Object
Pascal is the language upon which Delphi
is built. If you’re new to Delphi, strug-
gling to learn the language, or searching
for special Pascal code, there are several
sites that can help. The Pascal Language
Tutorial (http://www.swcp.com/~dodrill/
pasdoc/paslist.htm) covers the entire lan-
guage. Like a text book, it consists of 16
chapters, structured to be studied in
order, and you can download the source
code for the example programs to study
or modify.

Brian Brown and Peter Henry’s Pascal
Programming OnLine Notes (http://gatsby.
tafe.tas.edu.au/pascal/pstart.htm) also provides
a wealth of information. Topics span the
entire language, from simple variables to
arrays of records, from constants to pointers.
If you wish to test your knowledge of Pascal,
there is a cute “Test” section, written in
JavaScript, that poses questions and gives
you immediate feedback.

Need to search for particular Pascal code?
Check out Pascal Central (http://www.
pascal-central.com). In addition to technical
information about Pascal and source code,
this site includes a number of links to other
Pascal sites and FTP sites from which you
can download source code. I was particular-
ly impressed with the page on Pascal
Forums & Links.
One of the oldest Pascal sites I’m aware of is
the SWAG Web site (http://www.gdsoft.
com/swag/swag.html). This international
site includes a large collection of source code
and program examples, organized into 57 cat-
egories, covering the full range of program-
ming topics. Included in these categories are
data encryption, communications, and math
routines. While many of these categories are
specific to DOS programming with Pascal,
there is one category devoted to Delphi.

Finally, the Coder’s Knowledge Base
(http://netalive.org/ckb) is similar to the
previous site, featuring solutions to various
programming problems. However, rather
than being devoted strictly to Pascal, it
includes language-independent algorithms.
The emphasis is on Pascal code (Windows
and general purpose) and it includes some
Delphi code. The examples are code snip-
pets rather than units or complete programs.
The search facility makes it easy for you to
find code examples in a variety of areas.

In closing. I would like to thank those read-
ers who sent me sites to consider for this
and future columns. I hope you find all of
them beneficial. Next month, I’ll present
Delphi sites “off the beaten path.” ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at
Kentucky State University, specializing in
music composition and music theory. He has
been developing education-related applica-
tions with the Borland languages for more
than 10 years. He has published a number of
articles in various technical journals. Using
Delphi, he specializes in writing custom
components and implementing multimedia
capabilities in applications, particularly
sound and music. You can reach Alan on the
Internet at acmdoc@aol.com.

http://www.wotsit.org
http://www.geocities.com/siliconvalley/horizon/3433/ff_.htm
http://www.geocities.com/siliconvalley/horizon/3433/ff_.htm
http://www.iarchitect.com/mshame.htm
http://www.iarchitect.com/mshame.htm
http://www.iarchitect.com/mfame.htm
http://www.iarchitect.com/mfame.htm
http://www.swcp.com/~dodrill/pasdoc/paslist.htm
http://www.swcp.com/~dodrill/pasdoc/paslist.htm
http://gatsby.tafe.tas.edu.au/pascal/pstart.htm
http://gatsby.tafe.tas.edu.au/pascal/pstart.htm
http://www.pascal-central.com
http://www.pascal-central.com
http://www.gdsoft.com/swag/swag.html
http://www.gdsoft.com/swag/swag.html
http://netalive.org/ckb

	Table of Contents
	Delphi Tools
	Marotz Releases Cost Xpert 2.0
	Dart Announces PowerTCP Professional Edition
	AnyWare Announces AppTools VCL 2.01
	ZieglerSoft Announces ZieglerCollection one 1.50
	Cocolsoft Announces Cogencee
	Innoview Data Announces MULTILIZER VCL Edition 4.0
	HREF Tools Ships WebHub VCL 1.67

	On the Cover
	Browsing for Folders
	The About Windows Dialog Box
	Formatting Disks
	Windows NT and WideChar
	Choosing Icons
	Running Applications
	Conclusion

	DBNavigator
	Filter Using Queries
	Using Ranges
	Using ApplyRange
	Using Filters
	Filtering with Properties
	Using the OnFilterRecordEvent Handler
	Navigating Using a Filter
	Filters and Performance
	Using TESTFILT
	Conclusion

	Algorithms
	Exhaustive Search
	Binary Search
	Interpolation Search
	The Searches Compared
	Conclusion

	On Language
	An Interface Defined
	Hierarchies ...
	... or Interfaces?
	The Trouble with Hierarchies
	Interfaces to the Rescue
	Conclusion
	Begin Listing One — TReportsClass
	Begin Listing Two — ReportServerof Type TReports
	Begin Listing Three — ReportServerof Type IReports

	Informant Spotlight
	Best Accounting Package
	Best Add-in/Library
	Best Delphi Book
	Best Charting/Imaging Tool
	Best Connectivity Tool
	Best Database Tool
	Best Help Authoring Package
	Best Installation Package
	Best Reporting Tool
	Best Training
	Best VCL
	Best Utility
	Product of the Year
	See You Next Year
	Contacting the Winners

	OP Tech
	Changing the Behavior of a VCL Property
	Extending Further: Changing Related Classes
	Conclusion

	TextFile - Charlie Calvert's Delphi 4 Unleashed
	TextFile - Mastering Delphi 4
	File I New

